Advertisements
Advertisements
Question
In the following figure, PSDA is a parallelogram. Points Q and R are taken on PS such that PQ = QR = RS and PA || QB || RC. Prove that ar (PQE) = ar (CFD).
Solution
Given: In a parallelogram PSDA, points Q and R are on PS such that
PQ = QR = RS and PA || QB || RC.
To prove: ar (PQE) = ar (CFD)
Proof: In parallelogram PABQ,
And PA || QB ...[Given]
So, PABQ is a parallelogram.
PQ = AB ...(i)
Similarly, QBCR is also a parallelogram.
QR = BC ...(ii)
And RCDS is a parallelogram.
RS = CD ...(iii)
Now, PQ = QR = RS ...(iv)
From equations (i), (ii), (iii) and (iv),
PQ || AB ...[∴ In parallelogram PSDA, PS || AD]
In ΔPQE and ΔDCF,
∠QPE = ∠FDC ...[Since, PS || AD and PD is transversal, then alternate interior angles are equal]
PQ = CD ...[From equation (v)]
And ∠PQE = ∠FCD ...[∴ ∠PQE = ∠PRC corresponding angles and ∠PRC = ∠FCD alternate interior angles]
ΔPQE = ΔDCF ...[By ASA congruence rule]
∴ ar (ΔPQE) = ar (ΔCFD) ...[Since, congruent figures have equal area]
Hence proved.
APPEARS IN
RELATED QUESTIONS
In the given figure, ABCD is parallelogram, AE ⊥ DC and CF ⊥ AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.
P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar (APB) = ar (BQC).
A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points P and Q. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?
In the given below fig. ABCD, ABFE and CDEF are parallelograms. Prove that ar (ΔADE)
= ar (ΔBCF)
In the below fig. ABCD and AEFD are two parallelograms. Prove that
(1) PE = FQ
(2) ar (Δ APE) : ar (ΔPFA) = ar Δ(QFD) : ar (Δ PFD)
(3) ar (ΔPEA) = ar (ΔQFD)
ABCD is a trapezium with parallel sides AB = a cm and DC = b cm (Figure). E and F are the mid-points of the non-parallel sides. The ratio of ar (ABFE) and ar (EFCD) is ______.
PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm. A is any point on PQ. If PS = 5 cm, then ar (PAS) = 30 cm2.
ABCD is a parallelogram in which BC is produced to E such that CE = BC (Figure). AE intersects CD at F. If ar (DFB) = 3 cm2, find the area of the parallelogram ABCD.
In trapezium ABCD, AB || DC and L is the mid-point of BC. Through L, a line PQ || AD has been drawn which meets AB in P and DC produced in Q (Figure). Prove that ar (ABCD) = ar (APQD)
ABCD is a trapezium in which AB || DC, DC = 30 cm and AB = 50 cm. If X and Y are, respectively the mid-points of AD and BC, prove that ar (DCYX) = `7/9` ar (XYBA)