English
Karnataka Board PUCPUC Science Class 11

In an Experiment on Photoelectric Effect, Light of Wavelength 400 Nm is Incident on a Cesium Plate at the Rate of 5.0 W. the Potential of the Collector Plate - Physics

Advertisements
Advertisements

Question

In an experiment on photoelectric effect, light of wavelength 400 nm is incident on a cesium plate at the rate of 5.0 W. The potential of the collector plate is made sufficiently positive with respect to the emitter, so that the current reaches its saturation value. Assuming that on average, one out of every 106 photons is able to eject a photoelectron, find the photocurrent in the circuit.

Sum

Solution

Given:-

Wavelength of light, λ = 400 nm

Power, P = 5 W

Energy of photon,

`E = (hc)/λ = (1242/400)  "eV"`

Number of photons, n = `P/E`

`n = (5 xx 400)/(1.6 xx 10^-19 xx 1242)`

Number of electrons = 1 electron per 106 photons

Number of photoelectrons emitted,

`n' = (5 xx 400)/(1.6 xx 1242 xx 10^-19 xx 10^6)`

Photo electric current,

I = Number of electron `xx` Charge on electron

`I = (5 xx 400)/(1.6 xx 1242 xx 10^-19 xx 10^6) xx 1.6 xx 10^-19`

`= 1.6 xx 10^-6  "A" = 1.6  "uA"`

shaalaa.com
Photoelectric Effect and Wave Theory of Light
  Is there an error in this question or solution?
Chapter 20: Photoelectric Effect and Wave-Particle Duality - Exercises [Page 366]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 20 Photoelectric Effect and Wave-Particle Duality
Exercises | Q 26 | Page 366

RELATED QUESTIONS

(a) A monoenergetic electron beam with electron speed of 5.20 × 106 m s−1 is subject to a magnetic field of 1.30 × 10−4 T normal to the beam velocity. What is the a radius of the circle traced by the beam, given e/m for electron equals 1.76 × 1011 C kg−1?

(b) Is the formula you employ in (a) valid for calculating the radius of the path of a 20 MeV electron beam? If not, in what way is it modified?


If light of wavelength 412.5 nm is incident on each of the metals given below, which ones will show photoelectric emission and why?

Metal Work Function (eV)
Na 1.92
K 2.15
Ca 3.20
Mo 4.17

A light beam of wavelength 400 nm is incident on a metal plate of work function 2.2 eV. (a) A particular electron absorbs a photon and makes two collisions before coming out of the metal. Assuming that 10% of the extra energy is lost to the metal in each collision, find the kinetic energy of this electron as it comes out of the metal. (b) Under the same assumptions, find the maximum number of collisions the electron can suffer before it becomes unable to come out of the metal.


A horizontal cesium plate (φ = 1.9 eV) is moved vertically downward at a constant speed v in a room full of radiation of wavelength 250 nm and above. What should be the minimum value of v so that the vertically-upward component of velocity is non-positive for each photoelectron?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


In an experiment on photoelectric effect, the emitter and the collector plates are placed at a separation of 10 cm and are connected through an ammeter without any cell. A magnetic field B exists parallel to the plates. The work function of the emitter is 2.39 eV and the light incident on it has wavelengths between 400 nm and 600 nm. Find the minimum value of B for which the current registered by the ammeter is zero. Neglect any effect of space charge.


A silver ball of radius 4.8 cm is suspended by a thread in a vacuum chamber. Ultraviolet light of wavelength 200 nm is incident on the ball for some time during which light energy of 1.0 × 10−7 J falls on the surface. Assuming that on average, one photon out of every ten thousand is able to eject a photoelectron, find the electric potential at the surface of the ball, assuming zero potential at infinity. What is the potential at the centre of the ball?

(Use h = 6.63 × 10-34J-s = 4.14 × 10-15 eV-s, c = 3 × 108 m/s and me = 9.1 × 10-31kg)


Plot a graph to show the variation of stopping potential with frequency of incident radiation in relation to photoelectric effect.


Work function of aluminium is 4.2 eV. If two photons each of energy 2.5 eV are incident on its surface, will  the emission of electrons take place? Justify your answer. 


The stopping potential in an experiment on photoelectric effect is 1.5V. What is the maximum kinetic energy of the photoelectrons emitted? Calculate in Joules.


Answer the following question.
Why is the wave theory of electromagnetic radiation not able to explain the photoelectric effect? How does a photon picture resolve this problem?


In Photoelectric effect ______.


In the experimental set up for studying photoelectric effect, if keeping the frequency of the incident radiation and the accelerating potential fixed, the intensity of light is varied, then ______.


For a given frequency of light and a positive plate potential in the set up below, If the intensity of light is increased then ______.


In various experiments on photo electricity, the stopping potential for a given frequency of the incident radiation is ______.


Cathode rays can be deflected by


In photoelectric effect, the photoelectric current


An increase in the intensity of the radiation causing photo-electric emission from a surface does not affect the maximum K.E. of the photoelectrons. Explain.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×