English

In Parallelogram Pqrs, L is Mid-point of Side Sr and Sn is Drawn Parallel to Lq Which Meets Rq Produced at N and Cuts Side Pq at M. Prove that M is the Mid-point of Pq. - Mathematics

Advertisements
Advertisements

Question

In parallelogram PQRS, L is mid-point of side SR and SN is drawn parallel to LQ which meets RQ produced at N and cuts side PQ at M. Prove that M is the mid-point of PQ.

Sum

Solution

In ΔNSR

MQ = `(1)/(2)"SR"`
But L is the mid-point of SR and SR = PQ   ...(sides of a parallelogram)

MQ = `(1)/(2)"PQ"`
MQ = PM = LS = LR
Therefore, M is the mid-point of PQ.

shaalaa.com
  Is there an error in this question or solution?
Chapter 15: Mid-point and Intercept Theorems - Exercise 15.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 15 Mid-point and Intercept Theorems
Exercise 15.1 | Q 4

RELATED QUESTIONS

Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.


In Fig. below, BE ⊥ AC. AD is any line from A to BC intersecting BE in H. P, Q and R are
respectively the mid-points of AH, AB and BC. Prove that ∠PQR = 90°.


ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the
mid-points of the sides, in order, is a rectangle.


If the quadrilateral formed by joining the mid-points of the adjacent sides of quadrilateral ABCD is a rectangle,
show that the diagonals AC and BD intersect at the right angle.


In ΔABC, BE and CF are medians. P is a point on BE produced such that BE = EP and Q is a point on CF produced such that CF = FQ. Prove that: A is the mid-point of PQ.


Show that the quadrilateral formed by joining the mid-points of the adjacent sides of a square is also a square.


In the given figure, ABCD is a trapezium. P and Q are the midpoints of non-parallel side AD and BC respectively. Find: DC, if AB = 20 cm and PQ = 14 cm


In ΔABC, P is the mid-point of BC. A line through P and parallel to CA meets AB at point Q, and a line through Q and parallel to BC meets median AP at point R. Prove that: BC = 4QR


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: ∠EFG = 90°


In a parallelogram ABCD, E and F are the midpoints of the sides AB and CD respectively. The line segments AF and BF meet the line segments DE and CE at points G and H respectively Prove that: ΔGEA ≅ ΔGFD


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×