English

In the Following Figure, Abcd is a Parallelogram.Prove That: (I) Ap Bisects Angle A. (Ii) Bp Bisects Angle B (Iii) ∠Dap + ∠Bcp = ∠Apb - Mathematics

Advertisements
Advertisements

Question

In the following figure, ABCD is a parallelogram.

Prove that:
(i) AP bisects angle A.
(ii) BP bisects angle B
(iii) ∠DAP + ∠BCP = ∠APB

Sum

Solution

Consider ΔADP and ΔBCP,

AD = BC               ....[ Since ABCD is a parallelogram. ]

DC = AB               ....[ Since ABCD is a parallelogram. ]

∠A ≅ ∠C              ....[ Opposite angles ]

ΔADP ≅ ΔBCP     .....[ SAS ]

Therefore, AP = BP

AP bisects ∠A

BP bisects ∠B

In ΔAPB, AP = BP

AP bisects ∠A

BP bisects ∠B

In ΔAPB,

AP = PB

∠APB = ∠DAP + ∠BCP

Hence proved

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium] - Exercise 14 (C) [Page 182]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 14 Rectilinear Figures [Quadrilaterals: Parallelogram, Rectangle, Rhombus, Square and Trapezium]
Exercise 14 (C) | Q 11 | Page 182
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×