Advertisements
Advertisements
Question
In the given figure, DE || BC, AE = 15 cm, EC = 9 cm, NC = 6 cm and BN = 24 cm. Find lengths of ME and DM.
Solution
In ΔAME and ΔANC,
∠AME = ∠ANC ...(Since DE || BC that is, ME || NC)
∠MAE = ∠NAC ...(Common angle)
`=>` ΔAME and ΔANC ...(AA criterion for similarity)
`=> (ME)/(NC) = (AE)/(AC)`
`=> (ME)/6 = 15/24`
`=>` ME = 3.75 cm
In ΔADE and ΔABC,
∠ADE = ∠ABC ...(Since DE || BC that is, ME || NC)
∠AED = ∠ACB ...(Since DE || BC)
`=>` ΔADE and ΔABC ...(AA criterion for similarity)
`=> (AD)/(AB) = (AE)/(AC) = 15/24` ...(i)
In ΔADM and ΔABN,
∠ADM = ∠ABN ...(Since DE || BC that is, ME || NC)
∠DAM = ∠BAN ...(Common angle)
`=>` ΔADM and ΔABN ...(AA criterion for similarity)
`=> (DM)/(BN) = (AD)/(AB) = 15/24` ...(From (i))
`=> (DM)/24 = 15/24`
`=>` DM = 15 cm
APPEARS IN
RELATED QUESTIONS
In quadrilateral ABCD, diagonals AC and BD intersect at point E such that
AE : EC = BE : ED. Show that: ABCD is a trapezium.
P is a point on side BC of a parallelogram ABCD. If DP produced meets AB produced at point L, prove that: DP : PL = DC : BL.
In the given figure, AB || DC, BO = 6 cm and DQ = 8 cm; find: BP × DO.
In the given figure, AD = AE and AD2 = BD × EC. Prove that: triangles ABD and CAE are similar.
In the following figure, XY is parallel to BC, AX = 9 cm, XB = 4.5 cm and BC = 18 cm.
Find : XY
Triangle ABC is similar to triangle PQR. If AD and PM are corresponding medians of the two triangles, prove that : `("AB")/("PQ") = ("AD")/("PM")`.
Triangle ABC is similar to triangle PQR. If AD and PM are altitudes of the two triangles, prove that : `(AB)/(PQ) = (AD)/(PM)`.
ABC is a right angled triangle with ∠ABC = 90°. D is any point on AB and DE is perpendicular to AC. Prove that :
ΔADE ~ ΔACB.
Triangles ABC and DEF are similar.
If area (ΔABC) = 36 cm2, area (ΔDEF) = 64 cm2 and DE = 6.2 cm, find AB.
In the given figure ABC is a triangle with ∠EDB = ∠ACB.
(i) Prove that ΔABC ∼ ΔEBD.
(ii) If BE = 6 cm, EC = 4 cm, BD = 5 cm and area of ΔBED = 9 cm2. Calculate the length of AB and area of ΔABC.