English

It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f. f(x) = forotherwise.{x364 for 0≤x≤40 otherwise.Find P(0 < X ≤ 1). - Mathematics and Statistics

Advertisements
Advertisements

Question

It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find P(0 < X ≤ 1).

Sum

Solution

P(0 < X ≤ 1) = `int_0^1f(x).dx`

= `int_0^1 x^3/(64).dx`

= `(1)/(64) int_0^1 x^3.dx`

= `(1)/(256)[x^4]_0^1`

= `(1)/(256)`.

shaalaa.com
Types of Random Variables
  Is there an error in this question or solution?
Chapter 8: Probability Distributions - Exercise 8.2 [Page 144]

RELATED QUESTIONS

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2)`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P (–0·5 < x or x > 0·5)


The following is the p.d.f. of continuous r.v.

f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find expression for c.d.f. of X


The following is the p.d.f. of continuous r.v.

f (x) = `x/8` , for 0 < x < 4 and = 0 otherwise.

Find F(x) at x = 0·5 , 1.7 and 5


Given the p.d.f. of a continuous r.v. X , f (x) = `x^2/3` ,for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find

P( x < 1) 


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2/ 3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P( X > 0)


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find probability that X is between 1 and 3..


F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______


Fill in the blank :

The value of continuous r.v. are generally obtained by _______


Solve the following problem :

Identify the random variable as discrete or continuous in each of the following. Identify its range if it is discrete.

Amount of syrup prescribed by a physician.


Out of 100 people selected at random, 10 have common cold. If five persons selected at random from the group, then the probability that at most one person will have common cold is ______.


Three fair coins are tossed simultaneously. Find the probability mass function for a number of heads that occurred


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the probability mass function


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the cumulative distribution function


Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass function is defined by 
`f(x) = {{:((x^2 + 1)/k","  "for"  x = 0","  1","  2),(0","  "otherwise"):}` 
Find the value of k


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find the probability mass function


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find the value of k


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X < 3)


Choose the correct alternative:

The probability mass function of a random variable is defined as:

x – 2 – 1 0 1 2
f(x) k 2k 3k 4k 5k

Then E(X ) is equal to:


A random variable X has the following probability distribution:

X 1 2 3 4
P(X) `1/3` `2/9` `1/3` `1/9`

1hen, the mean of this distribution is ______ 


The probability distribution of a random variable X is given below.

X = k 0 1 2 3 4
P(X = k) 0.1 0.4 0.3 0.2 0

The variance of X is ______


A card is chosen from a well-shuffled pack of cards. The probability of getting an ace of spade or a jack of diamond is ______.


The p.d.f. of a continuous random variable X is

f(x) = 0.1 x, 0 < x < 5

= 0, otherwise

Then the value of P(X > 3) is ______ 


Two cards are randomly drawn, with replacement. from a well shuffled deck of 52 playing cards. Find the probability distribution of the number of aces drawn.


At random variable X – B(n, p), if values of mean and variance of X are 18 and 12 respectively, then total number of possible values of X are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×