English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the cumulative - Mathematics

Advertisements
Advertisements

Question

A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find the cumulative distribution function

Chart
Sum

Solution

Let X be the random variable denotes the total score in two thrown of a die.

Sample space S

I\II 1 3 3 5 5 5
1 2 4 4 6 6 6
3 4 6 6 8 8 8
3 4 6 6 8 8 8
5 6 8 8 10 10 10
5 6 8 8 10 10 10
5 6 8 8 10 10 10

n(S) = 36

X = {2, 4, 6, 8, 10}

Values of the random variable 2 4 6 8 10 Total
Number of elements in inverse image 1 4 10 12 9 36

Cumulative distribution function
F(x) = P(X ≤ x)

= `sum_(x_"i" ≤ x) "P"("X" = x_"i")` 

F(2) = P(X < 2)

= P(X < 2) + P(X = 2)

= `0 + 1/36`

= `1/36`

F(4) = `"P"("X" ≤ 4)`

=  P(X <2) + P(X = 2) + P(X = 4)

= `0+ 1/36 + 4/36`

= `5/36`

F(6) = `"P"("X" ≤ 6)`

= P(X < 2) + P(X = 2) + P(X = 4) + P(X = 6)

= `0 + 11/36+ 4/36 + 10/36`

= `15/36`

F(8) = P(X ≤ 8)

= P(X < 2) + P(X = 2) + P(X = 4) + P(X = 6) + P(X = 8)

= `0 + 1/6 + 4/36 + 10/36 + 12/36`

= `27/36`

F(10) = P(X ≤ 10)

= P(X < 2) + P(X = 2) + P(x = 8) + P(X = 10)

= `0 + 1/36 + 4/36 + 10/36 + 12/36 + 9/36`

= `36/36`

= 1

F(x) = `{{:(0",",  "For"  - oo < x < 2),(1/36",",  "For"  2 ≤ x ≤ 4),(5/36",",  "For"  4 ≤ x < 6),(15/36",",  "For"  6 ≤ x < 8),(27/36",",  "For"  8 ≤ x < 10),(1",",  "For"  10 ≤ x < oo):}`

shaalaa.com
Types of Random Variables
  Is there an error in this question or solution?
Chapter 11: Probability Distributions - Exercise 11.2 [Page 194]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 11 Probability Distributions
Exercise 11.2 | Q 2. (ii) | Page 194

RELATED QUESTIONS

Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

f (x) = k `(4 – x^2 )`, for –2 ≤ x ≤ 2 and = 0 otherwise.

P(x > 0)


Suppose error involved in making a certain measurement is continuous r.v. X with p.d.f.

`"f(x)" = {("k"(4 - x^2)      "for –2 ≤ x ≤ 2,"),(0                                 "otherwise".):}`

P(–1 < x < 1)


The following is the p.d.f. of continuous r.v.

f (x) = `x/8`, for 0 < x < 4 and = 0 otherwise.

Find expression for c.d.f. of X


Given the p.d.f. of a continuous r.v. X ,

f (x) = `x^2/3` , for –1 < x < 2 and = 0 otherwise

Determine c.d.f. of X hence find P(1 < x < 2)


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find P(0 < X ≤ 1).


It is felt that error in measurement of reaction temperature (in celsius) in an experiment is a continuous r.v. with p.d.f.

f(x) = `{(x^3/(64),  "for"  0 ≤ x ≤ 4),(0,   "otherwise."):}`
Find probability that X is between 1 and 3..


F(x) is c.d.f. of discrete r.v. X whose p.m.f. is given by P(x) = `"k"^4C_x` , for x = 0, 1, 2, 3, 4 and P(x) = 0 otherwise then F(5) = _______


Three fair coins are tossed simultaneously. Find the probability mass function for a number of heads that occurred


A six sided die is marked ‘1’ on one face, ‘3’ on two of its faces, and ‘5’ on remaining three faces. The die is thrown twice. If X denotes the total score in two throws, find P(4 ≤ X < 10)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X < 1)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  - oo < x < - 1),(0.15, - 1 ≤ x < 0),(0.35, 0 ≤ x < 1),(0.60, 1 ≤ x < 2),(0.85, 2 ≤ x < 3),(1, 3 ≤ x < oo):}`
Find P(X ≥ 2)


A random variable X has the following probability mass function.

x 1 2 3 4 5
F(x) k2 2k2 3k2 2k 3k

Find P(X > 3)


The cumulative distribution function of a discrete random variable is given by
F(x) = `{{:(0,  "for" - oo < x < 0),(1/2,  "for"  0 ≤ x < 1),(3/5,  "for"  1 ≤ x < 2),(4/5,  "for"  2 ≤ x < 4),(9/5,  "for"  3 ≤ x < 4),(1,  "for"   ≤ x < oo):}`
Find P(X < 3)


Let X = time (in minutes) that lapses between the ringing of the bell at the end of a lecture and the actual time when the professor ends the lecture. Suppose X has p.d.f.

f(x) = `{(kx^2","      0 ≤ x ≤ 2), (0","         "othenwise"):}`

Then, the probability that the lecture ends within 1 minute of the bell ringing is ______


The p.m.f. of a random variable X is

P(x) = `(5 - x)/10`,   x = 1, 2, 3, 4
       = 0,            otherwise

The value of E(X) is ______ 


If the probability function of a random variable X is defined by P(X = k) = a`((k + 1)/2^k)` for k - 0, 1, 2, 3, 4, 5, then the probability that X takes a prime value is ______


The c.d.f. of a discrete r.v. X is

X = x -4 -2 -1 0 2 4 6 8
F(x) 0.2 0.4 0.55 0.6 0.75 0.80 0.95 1

Then P(X ≤ 4|X > -1) = ?


The p.d.f. of a continuous random variable X is

f(x) = 0.1 x, 0 < x < 5

= 0, otherwise

Then the value of P(X > 3) is ______ 


A random variable X has the following probability distribution:

X = xi 1 2 3 4
P(X = xi) 0.2 0.15 0.3 0.35

The mean and the variance are respectively ______.


For the following distribution function F(x) of a rv.x.

x 1 2 3 4 5 6
F(x) 0.2 0.37 0.48 0.62 0.85 1

P(3 < x < 5) =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×