English

किसी अंकगणितीय श्रृंखला के चार क्रमिक पदों का योगफल 12 है तथा उन चार क्रमिक पदों में से तृतीय और चतुर्थ पद का योगफल 14 हो, तो वे चार पद ज्ञात कीजिए।(चार क्रमिक पद a − d, a, a + d, a + 2d - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

Question

किसी अंकगणितीय श्रृंखला के चार क्रमिक पदों का योगफल 12 है तथा उन चार क्रमिक पदों में से तृतीय और चतुर्थ पद का योगफल 14 हो, तो वे चार पद ज्ञात कीजिए।
(चार क्रमिक पद a − d, a, a + d, a + 2d लीजिए।)

Sum

Solution

मानो, अंकगणितीय श्रृंखला के चार क्रमिक पद (a − d), a, (a + d) तथा (a + 2d) हैं।

पहली शर्त के आधार पर,

(a − d) + a + (a + d) + (a + 2d) = 12

∴ 4a + 2d = 12

∴ 2a + d = 6 .......(I) (2 से भाग देने पर)

दूसरी शर्त के आधार पर,

∴ (a + d) + (a + 2d) = 14

∴ 2a + 3d = 14 ..........(II)

समीकरण (II) में से समीकरण (I) घटाने पर,

2a + 3d = 14 ......(II)
2a + d = 6 ..........(I)
−   −     −  
2d = 8

∴ d = 4

d = 4 यह मान समीकरण (I) में प्रतिस्थापित करने पर,

2a + d = 6

∴ 2a + 4 = 6 .....(मान प्रतिस्थापित करने पर)

∴ 2a = 6 − 4 = 2

∴ a = 1

∴ पहला पद = a − d = 1 − 4 = −3

दूसरा पद = a = 1

तीसरा पद = a + d = 1 + 4 = 5

चौथा पद = a + 2d = 1 + 8 = 9

∴ वे चार पद − 3, 1, 5 तथा 9 हैं।

shaalaa.com
अंकगणितीय शृंखला के प्रथम n पदों का योगफल (Sum of First n Terms of an A. P.)
  Is there an error in this question or solution?
Chapter 3: अंकगणितीय श्रृंखला - प्रश्नसंग्रह 3.3 [Page 73]

APPEARS IN

Balbharati Algebra (Mathematics 1) [Hindi] 10 Standard SSC Maharashtra State Board
Chapter 3 अंकगणितीय श्रृंखला
प्रश्नसंग्रह 3.3 | Q (8) | Page 73

RELATED QUESTIONS

किसी अंकगणितीय श्रृंखला का प्रथम पद 6 तथा सामान्य अंतर 3 हो तो S27 ज्ञात कीजिए।

a = 6, d = 3, S27 = ?

`"S"_"n" = "n"/2 [square + ("n" - 1)"d"]`

`"S"_27 = 27/2 [12 + (27 - 1)square]`

`= 27/2 xx square`

= 27 × 45

= `square`


1 और 140 के बीच की, 4 सेविभाज्य प्राकृत संख्याओं का योगफल कितना है, यह ज्ञात करने के लिए निम्नलिखित कृति पूर्ण कीजिए।

1 से 140 के बीच की 4 से विभाज्य संख्याएँ
4, 8, ................, 136
कुल कितनी संख्याएँ है? अर्थात n = कितनी `square` 
a = `square`, d = `square`, tn = `square` 
tn = a + (n − 1)d
136 = `square` + (n − 1) × `square`
n = `square` → Sn = `"n"/2[2"a" + ("n" - 1)]"d"`
`"S"_square = square/2 [      ]` = `square`

1 से 140 के बीच की, 4 सेविभाज्य संख्याओं का योगफल = `square`


प्रथम 123 सम प्राकृत संख्याओं का योगफल ज्ञात कीजिए।


किसी अंकगणितीय श्रृंखला का 19 वाँ पद 52 तथा 38 वाँ पद 148 हो, तो उस श्रृंखला के प्रथम 56 पदों का योगफल ज्ञात कीजिए।


किसी अंकगणितीय श्रृंखला के प्रथम 55 पदों का योगफल 3300 हो, तो उस श्रृंखला का 28 वाँ पद ज्ञात कीजिए।


किसी अंकगणितीय श्रृंखला के तीन क्रमिक पदों का योगफल 27 तथा उनका गुणनफल 504 हो, तो वे पद ज्ञात कीजिए।
(तीन क्रमिक पद a − d, a, a + d लीजिए।)


किसी अंकगणितीय श्रृंखला का 9 वाँ पद शून्य हो, तो 29 वाँ पद 19 वें पद का दुगुना होता है, सिद्ध कीजिए।


प्रथम ‘n’ सम प्राकृत संख्याओं का योगफल ज्ञात करो।


यदि अंकगणितीय श्रृंखला का पहला पद p, दूसरा पद q तथा अंतिम पद r हो, तो उस श्रृंखला के सभी पदों का जोड़ `("q" + "r" - 2"p") xx ("p" + "r")/(2("q"-"p"))` इतना है यह दिखाइये।


कविता ने किसी महिला बचत गट में पहले दिन 20 रुपये, दूसरे दिन 40 रुपये तथा तीसरे दिन 60 रुपये इस प्रकार पैसे जमा किए, तो उसकी फरवरी-2020 महीने की कुल बचत कितनी होगी ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×