Advertisements
Advertisements
Question
मान लीजिए कि N में एक संबंध R, aRb यदि 2a + 3b = 30 द्वारा परिभाषित है, तो R = ______।
Solution
मान लीजिए कि N में एक संबंध R, aRb यदि 2a + 3b = 30 द्वारा परिभाषित है, तो R = {(3, 8), (6, 6),(9, 4), (12, 2)}।
व्याख्या:
दिया गया है, 2a + 3b = 30
3b = 30 – 2a
b = `(30 -2"a")/3`
= `10 - (2"a")/3`
चूँकि 'a' और 'b' प्राकृत संख्याएँ हैं, इसलिए 'a' को '3' का गुणज होना चाहिए।
a = 3, b = 8 के लिए
a = 6, b = 6
a = 9, b = 4
a = 12, b = 2
R = {(3, 8), (6, 6),(9, 4), (12, 2)}
APPEARS IN
RELATED QUESTIONS
फलन f(x) = f(x) = `(x^2 + 2x + 1)/(x^2 - 8x + 12)` का प्रांत ज्ञात कीजिए।
प्राकृत संख्याओं के समुच्चय N में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:
∀ n, m ∈ N, nRm यदि n तथा में से प्रत्येक संख्या को 5 से विभाजित करने पर शेषफल 5 से कम बचता है, अर्थात, 0, 1, 2, 3 तथा 4 में से कोई एक संख्या। सिद्ध कीजिए कि R एक तुल्यता संबंध है। साथ ही R द्वारा निर्धारित युगलत: असयुंक्त उप-समुच्चयों को भी ज्ञात कीजिए।
मान लीजिए कि f(x) = |x| + x तथा g(x) = x – x ∀ x ∈ R द्वारा परिभाषित f, g: R → R दो फलन हैं, तो f o g तथा g o f ज्ञात कीजिए।
मान लीजिए कि R वास्तविक संख्याओ का समुच्चय है तथा f : R → R एक फलन है, जो f (x) = 4x + 5 द्वारा परिभाषित है। सिद्ध कीजिए कि f व्युत्क्रमणीय है तथा f–1 ज्ञात कीजिए।
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए, a * b = a – b
मान लीजिए कि R प्राकृत संख्याओं के समुच्चय N में एक संबंध है, जो nRm यदि n विभाजित करता है m को, द्वारा परिभाषित है, तो R
मान लीजिए कि N प्राकृत संख्याओं के समुच्चय है तथा f : N → N, f (n) = 2n + 3 ∀ n ∈ N द्वारा परिभाषित एक फलन है, तो f
मान लीजिए कि f : R → R, f (x) = x2 + 1 द्वारा परिभषित हैं, तो 17 तथा -3 के पूर्व प्रतिबिम्ब क्रमश:
मान लीजिए कि Z पूर्णांकों का समुच्चय है तथा R, Z में परिभाषित एक संबंध इस प्रकार है aRb, कि यदि a – b भाज्य है 3 से, तो R समुच्चय Z को ______ युगलत: असंयुक्त उप-समुच्चयों में विभाजन करता है।
समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f आच्छादी है तो f तथा g भी आच्छादी हैं।
मान लीजिए कि f: R → R फलन f(x) = 2x – 3 ∀ x ∈ R द्वारा परिभाषित है। f–1 लिखिए।
मान लीजिए C सम्मिश्र संख्याओं का समुच्चय है। सिद्ध कीजिए कि f(z) = |z|, z C द्वारा दिया गया प्रतिचित्रण f: C → R न तो एकैकी है और न ही आच्छादक (आच्छादि) है।
मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।
f = {(1, 4), (1, 5), (2, 4), (3, 5)}
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य तथा संक्रामक हों किंतु सममित नहीं हों।
मान लीजिए कि A = R – {3}, B = R – {1}, मान लीजिए कि f : A → B, f (x) = `(x - 2) /(x - 3)` ∀ x ∈ A द्वारा परिभाषित है, तो सिद्ध कीजिए कि f एकैकी आच्छादी है।
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x बड़ा है y से, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x y किसी पूर्णाक का वर्ग है, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o g ज्ञात कीजिए:
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = (a – b)2 ∀ a, b ∈ Q
किसी परिवार में बच्चों के अरिक्त समुच्चय तथा aRb, यदि a भाई है b का, द्वारा परिभाषित संबंध R पर विचार कीजिए, तो R ______
यदि समुच्चय A में 5 अवयव हैं तथा समुच्चय B में 6 अवयव हैं, तो A से B में एकैकी तथा आच्छादक प्रतिचित्रणों की संख्या ______ है।
मान लीजिए कि f: R → R f(x) = 3x2 - 5 द्वारा तथा g: R → R g(x) = `x/(x^2 + 1)` द्वारा परिभाषित है, तो g o f ______ है।
Z से Z में निम्नलिखित फलनों से कौन-से एकैकी आच्छादी हैं?
मान लीजिए f: [0, 1] → [0, 1] f(x) =`[(x, "यदि" x "परिमेय है")/(1-x "यदि" x "अपरिमेय है")]`
द्वारा परिभाषित है, तो (f o f) x ______ है।
मान लीजिए कि A = {1, 2, 3, 4, 5} में एक संबंध R = {(a, b) : |a2 - b2| <8 द्वारा परिभाषित है, तो R _______ द्वारा व्यक्त है।
एक पूर्णांक m एक अन्य पूर्णांक n से संबंधित कहालाता है, यदि m, एक पूर्णांकीय गुणज है n का। Z में इस प्रकार का संबंध स्वतुल्य, सममित तथा संक्रामक होता है।
मान लीजिए A = {0, 1} और N प्राकृत संख्याओं का समुच्चय है, तो f(2n – 1) = 0, f(2n) = 1, ∀ n∈ N द्वारा परिभाषित प्रतिचित्रण f: N → A आच्छादक है।
किसी समुच्चय में किसी द्वी-आधारी संक्रिया का तत्समक अवयव सदैव होता है।