Advertisements
Advertisements
Question
Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer:
(- 1, - 2), (1, 0), (- 1, 2), (- 3, 0)
Solution
Let the points (−1, −2), (1, 0), (−1, 2), and (−3, 0) represent the vertices A, B, C, and D of the given quadrilateral, respectively.
AB = `sqrt((-1-1)^2+(-2-0)^2)`
= `sqrt((-2)^2+(-2)^2)`
= `sqrt(4+4)`
= `sqrt8`
=`2sqrt2`
BC = `sqrt((1-(-1))^2+(0-2)^2)`
= `sqrt((2)^2+(-2)^2)`
= `sqrt(4+4)`
= `sqrt8`
= `2sqrt2`
CB = `sqrt((-1-(-3))^2+(2-0)^2) `
= `sqrt((2)^2+(2)^2)`
= `sqrt(4+4)`
= `sqrt8 `
= `2sqrt2`
AD = `sqrt((-1-(3))^2 + (-2-0)^2)`
= `sqrt((2)^2+(-2)^2)`
= `sqrt(4+4)`
= `sqrt8`
= `2sqrt2`
Diagonal AC = `sqrt((-1-(-1))^2+(-2-2)^2)`
= `sqrt(0^2+(-4)^2)`
= `sqrt(16) `
= 4
Diagonal BD = `sqrt((1-(-3))^2+(0-0)^2)`
= `sqrt((4)^2+0^2)`
= `sqrt16 `
= 4
It can be observed that all sides of this quadrilateral are of the same length and also, the diagonals are of the same length. Therefore, the given points are the vertices of a square.
APPEARS IN
RELATED QUESTIONS
Show that the points (a, a), (–a, –a) and (– √3 a, √3 a) are the vertices of an equilateral triangle. Also find its area.
If two vertices of an equilateral triangle be (0, 0), (3, √3 ), find the third vertex
Find the distance between the following pairs of points:
(a, b), (−a, −b)
If the distances of P(x, y) from A(5, 1) and B(–1, 5) are equal, then prove that 3x = 2y
Find the distance between the following pair of points:
(a+b, b+c) and (a-b, c-b)
Find the distance between the following pair of points:
(asinα, −bcosα) and (−acos α, bsin α)
Find the distance between the points
P(a sin ∝,a cos ∝ )and Q( acos ∝ ,- asin ∝)
Find the distance between the following pair of points.
L(5, –8), M(–7, –3)
Show that the points A(1, 2), B(1, 6), C(1 + 2`sqrt3`, 4) are vertices of an equilateral triangle.
A line segment of length 10 units has one end at A (-4 , 3). If the ordinate of te othyer end B is 9 , find the abscissa of this end.
The distance between the points (3, 1) and (0, x) is 5. Find x.
A point P lies on the x-axis and another point Q lies on the y-axis.
If the abscissa of point P is -12 and the ordinate of point Q is -16; calculate the length of line segment PQ.
The distances of point P (x, y) from the points A (1, - 3) and B (- 2, 2) are in the ratio 2: 3.
Show that: 5x2 + 5y2 - 34x + 70y + 58 = 0.
If the distance between point L(x, 7) and point M(1, 15) is 10, then find the value of x
Name the type of triangle formed by the points A(–5, 6), B(–4, –2) and C(7, 5).
Ayush starts walking from his house to office. Instead of going to the office directly, he goes to a bank first, from there to his daughter’s school and then reaches the office. What is the extra distance travelled by Ayush in reaching his office? (Assume that all distances covered are in straight lines). If the house is situated at (2, 4), bank at (5, 8), school at (13, 14) and office at (13, 26) and coordinates are in km.
Read the following passage:
Use of mobile screen for long hours makes your eye sight weak and give you headaches. Children who are addicted to play "PUBG" can get easily stressed out. To raise social awareness about ill effects of playing PUBG, a school decided to start 'BAN PUBG' campaign, in which students are asked to prepare campaign board in the shape of a rectangle: One such campaign board made by class X student of the school is shown in the figure. |
Based on the above information, answer the following questions:
- Find the coordinates of the point of intersection of diagonals AC and BD.
- Find the length of the diagonal AC.
-
- Find the area of the campaign Board ABCD.
OR - Find the ratio of the length of side AB to the length of the diagonal AC.
- Find the area of the campaign Board ABCD.
A point (x, y) is at a distance of 5 units from the origin. How many such points lie in the third quadrant?