Advertisements
Advertisements
Question
निम्नलिखित आकृति में, ∠AOB = 90° और ∠ABC = 30° है। तब, ∠CAO बराबर है :
Options
30⁰
45⁰
90⁰
60⁰
Solution
60⁰
स्पष्टीकरण -
चूँकि, किसी चाप द्वारा केन्द्र पर बनाया गया कोण, वृत्त के शेष भाग पर किसी भी बिंदु पर बनाए गए कोण का दोगुना होता है।
∴ ∠AOB = 2∠ACB
`\implies` 90° = 2∠ACB ...[∵ ∠AOB = 90°]
`\implies` ∠ACB = 45°
साथ ही, AO = OB ...[एक ही वृत्त की त्रिज्याएँ]
`\implies` ∠ABO = ∠BAO ...(i) [बराबर भुजाओं के सम्मुख कोण बराबर होते हैं।]
अब, ΔOAB में, ∠OAB + ∠ABO + ∠BOA = 180° ...[त्रिभुज के कोणों का योग 180° होता है।]
∴ ∠OAB + ∠OAB + 90° = 180° ...[(i) से]
`\implies` 2∠OAB = 180° – 90° = 90°
`\implies ∠OAB = 90^circ/2 = 45^circ` ...(ii)
साथ ही, ΔACB में, ∠ACB + ∠CBA + ∠CAB = 180° ...[त्रिभुज के कोणों का योग 180° होता है।]
∴ 45° + 30° + ∠CAB = 180° ...[∵ ∠ABC = 30°]
`\implies` ∠CAB = 105°
चूँकि, ∠CAO + ∠OAB = ∠CAB
`\implies` ∠CAO + 45° = 105° ...[(ii) से]
`\implies` ∠CAO = 105° – 45° = 60°
APPEARS IN
RELATED QUESTIONS
एक वृत्त में समान लंबाई की परिमित जीवाएँ होती हैं।
वृत्त एक समतल आकृति है।
सत्य या असत्य बताइए:
वृत का केंद्र सदैव उसके अभ्यंतर में स्थित होता है।
निम्नलिखित आकृति में, यदि OA = 5 cm, AB = 8 cm तथा OD जीवा AB पर लंब है, तो CD बराबर है
निम्नलिखित आकृति में, यदि ∠OAB = 40° है, तो ∠ACB बराबर है
O और O' केंद्रों वाले दो सर्वांगसम वृत्त A और B दो बिंदुओं पर प्रतिच्छेद करते हैं। तब, ∠AOB = ∠AO'B हैं।
यदि एक वृत्त PXAQBY की एक जीवा AB का लंब समद्विभाजक वृत्त को P और Q बिंदुओं पर प्रतिच्छेद करता है, तो सिद्ध कीजिए कि चाप PXA ≅ चाप PYB हैं।
आकृति में O एक वृत्त का केंद्र है। त्रिज्याखंड OAC और OPB को छायांकित'कीजिए।
किसी वृत्त की जीवा की लंबाई 24 सेमी तथा केंद्र से जीवा 5 सेमी दूरी पर है तो वृत्त की त्रिज्या ज्ञात कीजिए?
2.9 सेमी त्रिज्यावाले वृत्त की सबसे बड़ी जीवा की लंबाई कितनी हो सकती है?