Advertisements
Advertisements
Question
निम्नलिखित असमिका को x के लिए हल कीजिए:
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
Solution
`4/(x + 1) ≤ 3 ≤ 6/(x + 1)`, (x > 0)
⇒ 4 ≤ 3(x + 1) ≤ 6
⇒ 4 ≤ 3x + 3 ≤ 6
⇒ 4 - 3 ≤ 3x ≤ 6 - 3
आगे सरलीकृत करें
⇒ 1 ≤ 3x ≤ 3
⇒ `1/3` ≤ x ≤ 1
x के लिए हल `1/3` ≤ x ≤ 1 है।
APPEARS IN
RELATED QUESTIONS
दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।
3x - 2 < 2x +1
दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।
5x – 3 ≥ 3x -5
1 ≤ |x – 2| ≤ 3 को हल कीजिए।
किसी उत्पाद के लागत फलन एवं राजस्व फलन क्रमशः C(x) = 20x + 4000 एवं R(x) = 60x + 2000 हैं जहाँ x निर्मित की गईं एवं बेची गईं वस्तुओं की संख्या है। कुछ लाभ अर्जित करने के लिए कितनी वस्तुएँ अवश्य बेची जानी चाहिए?
निम्नलिखित असमिका निकाय को हल कीजिए:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
एक आयत की लंबाई उसकी चौड़ाई का तीन गुना है। यदि आयत का न्यूनतम परिमाप 160 सेमी है, तो
यदि |x + 3| ≥ 10, तो
यदि x ≥ –3, तो x + 5 ______ 2
यदि a < b और c < 0, तो `a/c` ______ `b/c`
यदि |3x - 7| > 2, तो x ______ `5/3` या x ______ 3
यदि p > 0 एवं q < 0, तो p + q ______ p
निम्नलिखित असमिका को x के लिए हल कीजिए:
`-5 ≤ (2 - 3x)/4 ≤ 9`
कैसेट बनाने वाली किसी कंपनी के लागत एवं राजस्व फलन क्रमश: C(x) = 26,000 + 30x एवं R(x) = 43x है, जहाँ x एक सप्ताह में निर्मित किए गए एवं बेचे गए कैसेटों की संख्या है। कुछ लाभ अर्जित करने के लिए कंपनी द्वारा कितनी कैसेट अवश्य बेचे जाने चाहिए?
किसी विलयन को 40°C एवं 45°C तापमान के बीच ही रखना है। फॉरेनहाइट पैमाने पर तापमान का परिसर (रेंज) ज्ञात कीजिए यदि परिवर्तन सूत्र F = `9/5"C" + 32` है।
विश्व का सबसे गहरा छेद करते हुए ज्ञात हुआ कि पृथ्वी की सतह से x किमी नीचे का तापमान T डिग्री सेल्सियस में T = 30 + 25(x – 3), 3 ≤ x ≤ 15 होता है। ज्ञात कीजिए कि कितनी गहराई पर तापमान 155°C एवं 205°C के मध्य होगा?
यदि x < 5, तो
दिया हुआ है कि x, y, b वास्तविक संख्याएँ हैं और x < y, b < 0, तब
यदि −3x + 17 < −13, तो
यदि x वास्तविक संख्या है और |x| < 3, तो
यदि |x − 1| > 5, तो
यदि |x + 2| ≤ 9, तो
बताइए निम्नलिखित कथन सत्य है या असत्य है?
यदि x < y और b < 0, तो `x/b<y/b`
बताइए निम्नलिखित कथन सत्य है या असत्य है?
यदि xy > 0, तो x > 0 और y < 0