English

Prove That: If the Diagonals of a Quadrilateral Bisect Each Other at Right Angles, Then It is a Rhombus. - Mathematics

Advertisements
Advertisements

Question

Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. 

Sum

Solution

 

Let OACB be a quadrilateral such that diagonals OC and AB bisect each other at 90º.

Taking O as the origin, let the poisition vectors of A and B be \[\vec{a}\] and \[\vec{b}\]  respectively. 

Then, \[\vec{OA} = \vec{a}\] and \[\vec{OB} = \vec{b}\] Position vector of mid-point of AB, \[\vec{OE} = \frac{\vec{a} + \vec{b}}{2}\] 

∴ Position vector of C, \[\vec{OC} = \vec{a} + \vec{b}\] 

By the triangle law of vector addition, we have 

\[\vec{OA} + \vec{AB} = \vec{OB} \]
\[ \Rightarrow \vec{AB} = \vec{OB} - \vec{OA} = \vec{b} - \vec{a}\] 

Since \[\vec{AB} \perp \vec{OC}\]  

\[\Rightarrow \vec{AB} . \vec{OC} = 0\]

\[ \Rightarrow \left( \vec{b} - \vec{a} \right) . \left( \vec{a} + \vec{b} \right) = 0\]

\[ \Rightarrow \left| \vec{b} \right|^2 - \left| \vec{a} \right|^2 = 0\]

\[ \Rightarrow \left| \vec{a} \right|^2 = \left| \vec{b} \right|^2 \]

\[ \Rightarrow \left| \vec{a} \right| = \left| \vec{b} \right|\]

\[ \Rightarrow OA = OB\] 

In a quadrilateral if diagonals bisects each other at right angle and adjacent sides are equal, then it is a rhombus. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.2 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.2 | Q 2 | Page 46

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

By vector method prove that the medians of a triangle are concurrent.


Find the coordinate of the point P where the line through A(3, –4, –5) and B(2, –3, 1) crosses the plane passing through three points L(2, 2, 1), M(3, 0, 1) and N(4, –1, 0).
Also, find the ratio in which P divides the line segment AB.


Show that the points A (1, –2, –8), B (5, 0, –2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.


In a triangle OAB,\[\angle\]AOB = 90º. If P and Q are points of trisection of AB, prove that \[{OP}^2 + {OQ}^2 = \frac{5}{9} {AB}^2\]


Prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.


Let `A (bara)` and `B (barb)` are any two points in the space and `"R"(bar"r")` be a point on the line segment AB dividing it internally in the ratio m : n, then prove that `bar r = (mbarb + nbara)/(m + n) `


The position vector of points A and B are `6bar"a" + 2bar"b"` and `bar"a" - 3bar"b"`. If the point C divides AB in the ratio 3 : 2, show that the position vector of C is `3bar"a" - bar"b"`.


Prove that the median of a trapezium is parallel to the parallel sides of the trapezium and its length is half of the sum of the lengths of the parallel sides.


In Δ OAB, E is the midpoint of OB and D is the point on AB such that AD : DB = 2 : 1. If OD and AE intersect at P, then determine the ratio OP : PD using vector methods.


The points A, B, C have position vectors `bar"a", bar"b" and bar"c"` respectively. The point P is the midpoint of AB. Find the vector `bar"PC"` in terms of `bar"a", bar"b", bar"c"`.


If D, E, F are the midpoints of the sides BC, CA, AB of a triangle ABC, prove that `bar"AD" + bar"BE" + bar"CF" = bar0`.


Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hat"i" - hat"j" + 3hat"k"` and `-5hat"i" + 2hat"j" - 5hat"k"` in the ratio 3:2
(i) internally
(ii) externally


If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and `"G"("r", -4/3, 1/3)` is its centroid then find the values of p, q and r


Prove that medians of a triangle are concurrent


If A(1, 3, 2), B(a, b, - 4) and C(5, 1, c) are the vertices of triangle ABC and G(3, b, c) is its centroid, then


Let G be the centroid of a Δ ABC and O be any other point in that plane, then OA + OB + OC + CG = ?


In a triangle ABC, if `1/(a + c) + 1/(b + c) = 3/(a + b + c)` then angle C is equal to ______


If the position vectors of points A and B are `hati + 8hatj + 4hatk` and `7hati + 2hatj - 8hatk`, then what will be the position vector of the midpoint of AB?


If M and N are the midpoints of the sides BC and CD respectively of a parallelogram ABCD, then `overline(AM) + overline(AN)` = ______


If G`(overlineg)` is the centroid, `H(overlineh)` is the orthocentre and P`(overlinep)` is the circumcentre of a triangle and `xoverlinep + yoverlineh + zoverlineg = 0`, then ______


If A, B, C are the vertices of a triangle whose position vectors are `overline("a"),overline("b"),overline("c")` and G is the centroid of the `triangle ABC,` then `overline("GA")+overline("GB")+overline("GC")` is ______.


The co-ordinates of the points which divides line segment joining the point A(2, –6, 8) and B(–1, 3,–4) internally in the ratio 1: 3' are ______.


In ΔABC, P is the midpoint of BC, Q divides CA internally in the ratio 2:1 and R divides AB externally in the ratio 1:2, then ______.


In ΔABC the mid-point of the sides AB, BC and CA are respectively (l, 0, 0), (0, m, 0) and (0, 0, n). Then, `("AB"^2 + "BC"^2 + "CA"^2)/("l"^2 + "m"^2 + "n"^2)` is equal to ______.


ΔABC has vertices at A = (2, 3, 5), B = (–1, 3, 2) and C = (λ, 5, µ). If the median through A is equally inclined to the axes, then the values of λ and µ respectively are ______.


The position vectors of three consecutive vertices of a parallelogram ABCD are `A(4hati + 2hatj - 6hatk), B(5hati - 3hatj + hatk)`, and `C(12hati + 4hatj + 5hatk)`. The position vector of D is given by ______.


The position vector of points A and B are `6 bar "a" + 2 bar "b" and bar "a" - 3 bar"b"`. If the point C divided AB in the ratio 3 : 2, show that the position vector of C is `3 bar "a" - bar "b".`


The position vector of points A and B are `6bara +2barb ` and `bara-3barb `.If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara-barb` .


If `bara, barb` and `barr` are position vectors of the points A, B and R respectively and R divides the line segment AB externally in the ratio m : n, then prove that `barr = (mbarb - nbara)/(m - n)`.


The position vector of points A and B are `6bara + 2 barb` and `bara-3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara -barb`.


The position vector of points A and B are `6bara + 2barb` and `bara - 3barb`. If the point C divides AB in the ratio 3 : 2,  then show that the position vector of C is `3bara - barb`. 


The position vectors of points A and B are 6`bara` + 2`barb` and `bara - 3barb`. If the point C divides AB in the ratio 3:2, then show that the position vector of C is 3`bara - b`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×