Advertisements
Advertisements
Question
रेखाओं `sqrt3"x" + "y" = 1` और `"x" + sqrt3"y" = 1` के बीच का कोण ज्ञात कीजिए।
Solution
पहली रेखा: `sqrt3"x" + "y" = 1` या `"y" = -sqrt3"x" + 1`
ढाल = `-sqrt3 = "m"_1`
दूसरी रेखा: `"x" + sqrt3"y" = 1` या `"y" = -1/sqrt3"x" + 1/sqrt3`
∴ ढाल `-1/sqrt3 = "m"_2`
दो रेखाओं के बीच कोण θ हो, तब
tanθ = `|("m"_1 - "m"_2)/(1 + "m"_1"m"_2)|`
= `|((-sqrt3) - (-1/sqrt3))/(1 + (-sqrt3) (-1/sqrt3))|`
= `|-sqrt3 + 1/sqrt3|/(1 + 1)`
= `|(-3 + 1)/(2sqrt3)|`
= `2/(2sqrt3)`
= `1/sqrt3`
θ = 30°
दी गई दो रेखाओं के बीच का कोण 30° है और दूसरा कोण 180° - 30° =150° है।
APPEARS IN
RELATED QUESTIONS
रेखा x – 7y + 5 = 0 पर लंब और x-अंत: खंड 3 वाली रेखा का समीकरण ज्ञात कीजिए।
बिंदुओं (h, 3) और (4, 1) से जाने वाली रेखा, रेखा 7x – 9y – 19 = 0 को समकोण पर प्रतिच्छेद करती है। h का मान ज्ञात कीजिए।
सिद्ध कीजिए कि बिंदु (x1, y1) से जाने वाली और रेखा Ax + By + C = 0 के समांतर रेखा का समीकरण A(x – x1) + B(y – y1) = 0 है।
मूल बिंदु से रेखा y = mx + c पर डाला गया लंब रेखा से बिंदु (−1, 2) पर मिलता है। m और c के मान ज्ञात कीजिए।
यदि p और q क्रमशः मूल बिंदु से रेखाओं x cos θ – y sin θ = k cos 2θ और x sec θ +y cosec θ = k पर लंब की लंबाइयाँ हैं तो सिद्ध कीजिए कि p2 + 4q2 = k2
यदि p मूल बिंदु से उस रेखा पर डाले लंब की लंबाई हो जिस पर अक्षों पर कटे अंत: खंड a और b हों, तो दिखाइए कि `1/"p"^2 = 1/"a"^2 + 1/"b"^2`
उन रेखाओं के समीकरण ज्ञात कीजिए जिनके अक्षों से कटे अंतः खंडों का योग और गुणनफल क्रमशः 1 और –6 है।
यदि तीन रेखाएँ जिनके समीकरण y = m1x + c1, y = m2x + c2 और y = m3x + c3 हैं, संगामी हैं तो दिखाइए कि m1(c2 – c3) + m2(c3 – c1) + m3(c1 – c2) = 0
दर्शाइए कि मूल बिन्दु से जाने वाली और रेखा y = mx + c से θ कोण बनाने वाली उस रेखा का समीकरण `"y"/"x" = ±("m" + tan θ)/(1 - "m" tan θ)` हैं।
(−1, 1) और (5, 7) को मिलाने वाली रेखाखंड को रेखा x + y = 4 किस अनुपात में विभाजित करती है?
समकोण त्रिभुज के कर्ण के अंतय बिंदु (1, 3) और (−4, 1) हैं। त्रिभुज के पाद (legs) (समकोणीय भुजाओ) का एक समीकरण ज्ञात कीजिए जो कि दोनों अक्षरों के सामांतर हो।
समांतर रखाओं 9x + 6y – 7 = 0 और 3x + 2y + 6 = 0 से समदूरस्थ रेखा का समीकरण ज्ञात कीजिए।
दिखाइए कि `(sqrt("a"^2 - "b"^2), 0)` और `(-sqrt("a"^2 - "b"^2), 0)` बिंदुओं से रेखा `"x"/"a" cos θ + "y"/"b" sin θ = 1` पर खींचे गये लंबों की लंबाइयों का गुणनफल b2 है।
एक व्यक्ति समीकरणों 2x – 3y + 4= 0 और 3x + 4y – 5 = 0 से निरूपित सरल रेखीय पथों के संधि बिंदुओं (junction/crossing) पर खड़ा है और समीकरण 6x – 7y + 8 = 0 से निरूपित पथ पर न्यूनतम समय में पहुँचना चाहता है। उसके द्वारा अनुसरित पथ का समीकरण ज्ञात कीजिए।