Advertisements
Advertisements
Question
समांतर रखाओं 9x + 6y – 7 = 0 और 3x + 2y + 6 = 0 से समदूरस्थ रेखा का समीकरण ज्ञात कीजिए।
Solution
दी गई रेखाओं के समीकरण हैं
9x + 6y – 7 = 0 …(1)
3x + 2y + 6 = 0 …(2)
मान लीजिए P (h, k) एक स्वेच्छ बिंदु है जो रेखाओं (1) और (2) से समान दूरी पर है। रेखा (1) से P (h,k) की लंबवत दूरी निम्न द्वारा दी गई है
`d_1 = |9h + 6k - 7|/((9)^2 + (6)^2) = |9h + 6k - 7|/sqrt117 = |9h + 6k - 7|/(3sqrt13)`
रेखा (2) से P (h, k) की लांबिक दूरी निम्न द्वारा दी गई है
`d_1 = |3h + 2k + 6|/((3)^2 + (2)^2) d_1 = |3h + 2k + 6|/sqrt13`
चूँकि P (h, k) रेखा (1) और (2) से समान दूरी पर है, d1 = d2
= `|9h + 6k - 7|/(3sqrt13) = |3h + 2k + 6|/sqrt13`
= |9h + 6k - 7| = 3|3h + 2k + 6|
= |9h + 6k - 7| = ±3|3h + 2k + 6|
= 9h + 6k - 7 = 3(3h + 2k + 6) या 9h + 6k - 7 = -3 (3h + 2k + 6)
स्थिति 9h + 6k - 7 = 3 (3h + 2k + 6) संभव नहीं है क्योंकि
9h + 6k - 7 3(3h + 2k + 6) = -7 = 18 (जो असंगत है)
∴ 9h + 6k - 7= -3(3h + 2k + 6)
9h + 6k - 7 = - 9h - 6k - 18
= 18h + 12k + 11 = 0
इस प्रकार, रेखा का अभीष्ट समीकरण 18x + 12y + 11 = 0 है।
APPEARS IN
RELATED QUESTIONS
रेखा x – 7y + 5 = 0 पर लंब और x-अंत: खंड 3 वाली रेखा का समीकरण ज्ञात कीजिए।
रेखाओं `sqrt3"x" + "y" = 1` और `"x" + sqrt3"y" = 1` के बीच का कोण ज्ञात कीजिए।
बिंदुओं (h, 3) और (4, 1) से जाने वाली रेखा, रेखा 7x – 9y – 19 = 0 को समकोण पर प्रतिच्छेद करती है। h का मान ज्ञात कीजिए।
सिद्ध कीजिए कि बिंदु (x1, y1) से जाने वाली और रेखा Ax + By + C = 0 के समांतर रेखा का समीकरण A(x – x1) + B(y – y1) = 0 है।
बिंदु (−1, 3) से रेखा 3x – 4y – 16 = 0 पर डाले गये लंबपाद के निर्देशांक ज्ञात कीजिए।
मूल बिंदु से रेखा y = mx + c पर डाला गया लंब रेखा से बिंदु (−1, 2) पर मिलता है। m और c के मान ज्ञात कीजिए।
शीर्षों A(2, 3), B(4, –1) और C(1, 2) वाले त्रिभुज ABC के शीर्ष A से उसकी संमुख भुजा पर लंब डाला गया है। लंब की लंबाई तथा समीकरण ज्ञात कीजिए।
यदि p मूल बिंदु से उस रेखा पर डाले लंब की लंबाई हो जिस पर अक्षों पर कटे अंत: खंड a और b हों, तो दिखाइए कि `1/"p"^2 = 1/"a"^2 + 1/"b"^2`
उन रेखाओं के समीकरण ज्ञात कीजिए जिनके अक्षों से कटे अंतः खंडों का योग और गुणनफल क्रमशः 1 और –6 है।
यदि तीन रेखाएँ जिनके समीकरण y = m1x + c1, y = m2x + c2 और y = m3x + c3 हैं, संगामी हैं तो दिखाइए कि m1(c2 – c3) + m2(c3 – c1) + m3(c1 – c2) = 0
दर्शाइए कि मूल बिन्दु से जाने वाली और रेखा y = mx + c से θ कोण बनाने वाली उस रेखा का समीकरण `"y"/"x" = ±("m" + tan θ)/(1 - "m" tan θ)` हैं।
(−1, 1) और (5, 7) को मिलाने वाली रेखाखंड को रेखा x + y = 4 किस अनुपात में विभाजित करती है?
समकोण त्रिभुज के कर्ण के अंतय बिंदु (1, 3) और (−4, 1) हैं। त्रिभुज के पाद (legs) (समकोणीय भुजाओ) का एक समीकरण ज्ञात कीजिए जो कि दोनों अक्षरों के सामांतर हो।
दिखाइए कि `(sqrt("a"^2 - "b"^2), 0)` और `(-sqrt("a"^2 - "b"^2), 0)` बिंदुओं से रेखा `"x"/"a" cos θ + "y"/"b" sin θ = 1` पर खींचे गये लंबों की लंबाइयों का गुणनफल b2 है।
एक व्यक्ति समीकरणों 2x – 3y + 4= 0 और 3x + 4y – 5 = 0 से निरूपित सरल रेखीय पथों के संधि बिंदुओं (junction/crossing) पर खड़ा है और समीकरण 6x – 7y + 8 = 0 से निरूपित पथ पर न्यूनतम समय में पहुँचना चाहता है। उसके द्वारा अनुसरित पथ का समीकरण ज्ञात कीजिए।