English

यदि p मूल बिंदु से उस रेखा पर डाले लंब की लंबाई हो जिस पर अक्षों पर कटे अंत: खंड a और b हों, तो दिखाइए कि pab1p2=1a2+1b2 - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि p मूल बिंदु से उस रेखा पर डाले लंब की लंबाई हो जिस पर अक्षों पर कटे अंत: खंड a और b हों, तो दिखाइए कि  `1/"p"^2 = 1/"a"^2 + 1/"b"^2`

Sum

Solution

यह ज्ञात है कि उस रेखा का समीकरण जिसके अक्षों पर अंतःखंड a और b हैं

`x/a + y/b = 1`

या bx + ay = ab

या bx + ay - ab = 0      .......(1)

एक बिंदु (x1, y1) से एक रेखा Ax + By + C = 0 की लंब की दूरी (d) d = `|Ax_1 + By_1 + C|/sqrt(A^2 + B^2)` द्वारा दी गई है।

समीकरण (1) की तुलना रेखा Ax + By + C = 0 के सामान्य समीकरण से करने पर, हमें A = b, B = a, और C = -ab मिलता है।

इसलिए, यदि बिंदु (x1, y1) = (0, 0) से रेखा (1) तक लंब की लंबाई p है, तो हम प्राप्त करते हैं

`p = |A(0) + B(0)-ab|/sqrt(b^2 + a^2)`

= `p = |-ab|/sqrt(a^2 + b^2)`

दोनों पक्षों का वर्ग करने पर, हमें प्राप्त होता है

`p^2 = (-ab)^2/(a^2 + b^2)`

= p2 (a2 + b2) = a2b2

= `(a^2 + b^2)/(a^2b^2) = 1/(p^2)`

= `1/p^2 = 1/a^2 + 1/b^2`.

shaalaa.com
रेखा का व्यापक समीकरण
  Is there an error in this question or solution?
Chapter 10: सरल रेखाएँ - प्रश्नावली 10.3 [Page 243]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 10 सरल रेखाएँ
प्रश्नावली 10.3 | Q 18. | Page 243

RELATED QUESTIONS

रेखा x – 7y + 5 = 0 पर लंब और x-अंत: खंड 3 वाली रेखा का समीकरण ज्ञात कीजिए।


बिंदुओं (h, 3) और (4, 1) से जाने वाली रेखा, रेखा 7x – 9y – 19 = 0 को समकोण पर प्रतिच्छेद करती है। h का मान ज्ञात कीजिए।


सिद्ध कीजिए कि बिंदु (x1, y1) से जाने वाली और रेखा Ax + By + C = 0 के समांतर रेखा का समीकरण A(x – x1) + B(y – y1) = 0 है।


बिंदु (−1, 3) से रेखा 3x – 4y – 16 = 0 पर डाले गये लंबपाद के निर्देशांक ज्ञात कीजिए।


मूल बिंदु से रेखा y = mx + c पर डाला गया लंब रेखा से बिंदु (−1, 2) पर मिलता है। m और c के मान ज्ञात कीजिए।


यदि p और q क्रमशः मूल बिंदु से रेखाओं x cos θ – y sin θ = k cos 2θ और x sec θ +y cosec θ = k पर लंब की लंबाइयाँ हैं तो सिद्ध कीजिए कि p2 + 4q2 = k2


शीर्षों A(2, 3), B(4, –1) और C(1, 2) वाले त्रिभुज ABC के शीर्ष A से उसकी संमुख भुजा पर लंब डाला गया है। लंब की लंबाई तथा समीकरण ज्ञात कीजिए।


उन रेखाओं के समीकरण ज्ञात कीजिए जिनके अक्षों से कटे अंतः खंडों का योग और गुणनफल क्रमशः 1 और –6 है।


दर्शाइए कि मूल बिन्दु से जाने वाली और रेखा y = mx + c से θ कोण बनाने वाली उस रेखा का समीकरण `"y"/"x" = ±("m" + tan θ)/(1 - "m" tan θ)` हैं।


(−1, 1) और (5, 7) को मिलाने वाली रेखाखंड को रेखा x + y = 4 किस अनुपात में विभाजित करती है?


समकोण त्रिभुज के कर्ण के अंतय बिंदु (1, 3) और (−4, 1) हैं। त्रिभुज के पाद (legs) (समकोणीय भुजाओ) का एक समीकरण ज्ञात कीजिए जो कि दोनों अक्षरों के सामांतर हो।


समांतर रखाओं 9x + 6y – 7 = 0 और 3x + 2y + 6 = 0 से समदूरस्थ रेखा का समीकरण ज्ञात कीजिए।


दिखाइए कि `(sqrt("a"^2 - "b"^2), 0)` और `(-sqrt("a"^2 - "b"^2), 0)` बिंदुओं से रेखा `"x"/"a" cos θ + "y"/"b" sin θ = 1` पर खींचे गये लंबों की लंबाइयों का गुणनफल b2 है।


एक व्यक्ति समीकरणों 2x – 3y + 4= 0 और 3x + 4y – 5 = 0 से निरूपित सरल रेखीय पथों के संधि बिंदुओं (junction/crossing) पर खड़ा है और समीकरण 6x – 7y + 8 = 0 से निरूपित पथ पर न्यूनतम समय में पहुँचना चाहता है। उसके द्वारा अनुसरित पथ का समीकरण ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×