Advertisements
Advertisements
Question
सभी समुच्चयों A, B तथा C के लिए निम्नलिखित समुच्चयों का सही मिलान कीजिएः
(i) ((A′ ∪ B′) – A)′ | (a) A – B |
(ii) [B′ ∪ (B′ – A)]′ | (b) A |
(iii) (A – B) – (B – C) | (c) B |
(iv) (A – B) ∩ (C – B) | (d) (A × B) ∩ (A × C) |
(v) A × (B ∩ C) | (e) (A × B) ∪ (A × C) |
(vi) A × (B ∪ C) | (f) (A ∩ C) – B |
Solution
Answer | |
(i) ((A′ ∪ B′) – A)′ | (b) A |
(ii) [B′ ∪ (B′ – A)]′ | (c) B |
(iii) (A – B) – (B – C) | (a) A – B |
(iv) (A – B) ∩ (C – B) | (f) (A ∩ C) – B |
(v) A × (B ∩ C) | (d) (A × B) ∩ (A × C) |
(vi) A × (B ∪ C) | (e) (A × B) ∪ (A × C) |
स्पष्टीकरण:
भाग (i) के लिए गणना करें:
((A ∪ B′) – A)′ = [(A ∩ B') ∩ A'] [∵ A – B = A ∩ B']
= [(A ∪ B)' ∩ A']' [∵ A ∪ B' = (A ∩ B)']
= [(A ∩ B)']’ ∪ (A')' [∵ (A')' = A]
= (A ∩ B) ∪ A
भाग (ii) के लिए गणना करें:
भाग (iii) के लिए गणना करें:
(A − B) − (B − C) = (A ∩ B′) − (B ∩ C′) [∵ A − B =(A ∩ B′)]
= (A ∩ B′) ∩ (B ∩ C′)′ or = (A ∩ B′) ∩ (B ∪ (C′)) [(A ∩ B)′ = A′ ∪ B′]
= (A ∩ B′) ∩ (B′ ∪ C) or = [A ∩ (B ∪ C)] ∩ [B′ ∩ (B ∪ C)] = [A ∩ (B ∪ C)] ∪ B' or = (A ∩ B′) ∩ (B ∪ C) ∩ B′
= (A ∩ B′) ∩ B′ = (A ∩ B′) = A − B
भाग (iv) के लिए गणना करें:
(A − B) ∩ (C − B) = (A ∩ B′) ∩ (C ∩ B′) [∵ A − B =(A ∩ B′)]
= (A ∩ C) ∩ B
= (A ∩ C) − B [∵ A ∩ B′ = A − B]
A × (B ∩ C) = (A × B) ∩ (A × C)
भाग (vi) के लिए गणना करें:
APPEARS IN
RELATED QUESTIONS
यदि X और Y दो ऐसे समुच्चय हैं कि n(X) = 17, n(Y) = 23 तथा n(X ∪ Y) = 38, तो n(X ∩ Y) ज्ञात कीजिए।
400 व्यक्तियों के समूह में, 250 हिन्दी तथा 200 अंग्रेजी बोल सकते हैं। कितने व्यक्ति हिन्दी तथा अंग्रेजी दोनों बोल सकते हैं?
यदि X और Y दो ऐसे समुच्चय हैं कि x में 40, X ∩ Y में 60 और X ∪ Y में 10 अवयव हों, तो Y में कितने अवयव होंगें?
70 व्यक्तियों के समूह में 37 कॉफी, 52 चाय पसंद करते हैं और प्रत्येक व्यक्ति दोनों मे से कम से कम एक पेय पसंद करता है, तो कितने व्यक्ति कॉफी और चाय दोनों पसंद करते हैं?
एक कमेटी में, 50 व्यक्ति फ्रैंच 20 व्यक्ति स्पेनिश और 10 व्यक्ति स्पेनिश और फ्रैंच दोनों ही .भाषाओं को बोल सकते हैं। कितने व्यक्ति इन दोनों ही भाषाओं में से कम से कम एक भाषा बोल सकते हैं?
60 लोगों के सर्वेक्षण में पाया गया कि 25 लोग समाचार पत्र H, 26 लोग समाचार पत्र T, 26 लोग समाचार पत्र I, 9 लोग H तथा I दोनों, 11 लोग H तथा T दोनों, 8 लोग T तथा । दोनों और 3 लोग तीनों ही समाचार पत्र पढ़ते हैं, तो निम्नलिखित ज्ञात कीजिए:
- कम से कम एक समाचार पत्र पढ़ने वालों की संख्या।
- ठीक ठीक केवल एक समाचार पत्र पढ़ने वालों की संख्या।
मान लीजिए कि P अभाज्य संख्याओं का समुच्चय है और S = {t|2t - 1|} एक अभाज्य संख्या है। सिद्ध कीजिए कि S ⊂ P.
गणित, भौतिक विज्ञान तथा रसायन विज्ञान में परीक्षा देने वाले 50 विद्यार्थियों में से प्रत्येक कम से कम एक विषय में उत्तीर्ण होता है। 37 गणित में, 24 भौतिक विज्ञान में तथा 43 रसायन विज्ञान में उत्तीर्ण होते हैं। यदि गणित और भौतिक विज्ञान में अधिकतम 19, गणित और रसायन विज्ञान में अधिकतम 29 तथा भौतिक विज्ञान और रसायन विज्ञान में अधिकतम 20 उत्तीर्ण होते हैं, तो तीनों विषयों में उत्तीर्ण होने वाले विद्यार्थियों की अधिकतम संभव संख्या कितनी है?
प्रत्येक समुच्चय Xr में 5 अवयव हैं तथा प्रत्येक समुच्चय Yr में 2 अवयव हैं और `""_(r = 1)""^(20)X_r = S = ""_(r = 1)""^(n)Y_r`. यदि S का प्रत्येक अवयव Xr के तथ्यतः (exactly) 10 समुच्चयों और Yr प्रकार के तथ्यतः 4 समुच्चयों में है, तो n का मान ______
किसी शहर के 10,000 परिवारों के बारे में ज्ञात होता है कि 40% समाचार पत्र A, 20% समाचार पत्र B, 10% समाचार पत्र C, 5% समाचार पत्र A और B, 3% समाचार पत्र B और C तथा 4% समाचार पत्र A और C खरीदते हैं। यदि 2% परिवार तीनों ही समाचार पत्र खरीदते हैं, तो उन परिवारों की संख्या ज्ञात कीजिए जो केवल समाचार पत्र A खरीदते हैं।
किसी शहर के 10,000 परिवारों के बारे में ज्ञात होता है कि 40% समाचार पत्र A, 20% समाचार पत्र B, 10% समाचार पत्र C, 5% समाचार पत्र A और B, 3% समाचार पत्र B और C तथा 4% समाचार पत्र A और C खरीदते हैं। यदि 2% परिवार तीनों ही समाचार पत्र खरीदते हैं, तो उन परिवारों की संख्या ज्ञात कीजिए जो A, B तथा C में से कोई भी समाचार पत्र नहीं खरीदते हैं।
50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल फ्रांसीसी पढ़ते हैं।
50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल अंग्रेजी पढ़ते हैं।
50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, केवल संस्कृत पढ़ते हैं।
50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, अंग्रेजी और संस्कृत पढ़ते हैं परंतु, फ्रांसीसी नहीं पढ़ते हैं।
50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, फ्रांसीसी और अंग्रेजी पढ़ते हैं परंतु संस्कृत नहीं पढ़ते हैं।
50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, तीनों भाषाओं में से कम से कम एक भाषा पढ़ते हैं।
50 विद्यार्थियों के एक समूह में फ्रांसीसी, अंग्रेजी और संस्कृत विषयों का अध्ययन करने वालों की संख्या निम्नलिखित प्रकार है: फ्रांसीसी = 17, अंग्रेजी = 13, संस्कृत = 15, फ्रांसीसी और अंग्रेजी = 09, अंग्रेजी और संस्कृत = 04, फ्रांसीसी और संस्कृत = 05, अंग्रेजी, फ्रांसीसी और संस्कृत = 03 उन विद्यार्थियों की संख्या ज्ञात कीजिए जो, तीनों भाषाओं में से एक भी भाषा नहीं पढ़ते हैं।
यदि 840 व्यक्तियों वाले किसी नगर में 450 व्यक्ति हिंदी, 300 व्यक्ति अंग्रेजी और 200 व्यक्ति दोनों ही विषय पढ़ते हैं, तो दोनों में से कोई भी विषय नहीं पढ़ने वाले व्यक्तियों की संख्या ______
यदि X = {8n − 7n − 1 ∣ n ∈ N} और Y = {49n − 49 ∣ n ∈ N}, तो ______
यदि समुच्चय A और B निम्नलिख़ित प्रकार से परिभाषित हैं, A = `{(x,y)∣y=1/x,0≠x∈R}` B = {(x; y) ∣ y = −x, x ∈ R}, तो ______
मान लीजिए कि S = {x ∣ x 100 से छोटा 3 का एक धनात्मक गुणज है},
P = {x ∣ x, 20 से छोटी एक अभाज्य संख्या है}, तो n(S) + n(P) = ______ है।
जब A = ϕ, तो P(A) में अवयवों की संख्या ______ है।