English

State Kepler'S Law of Orbit and Law of Equal Areas. - Physics

Advertisements
Advertisements

Question

State Kepler's law of orbit and law of equal areas.

Short Note

Solution 1

Ist law ( Law of orbit ) : The orbital path in the solar system is an ellipse with sun as one focus.


2nd law ( Law of equal area ) : The radius vector joining the centre of the planet to the centre of sun traces out equal area in equal intervals of time.

i.e.The area velocity of the planet is constant

shaalaa.com

Solution 2

All planet revolves around the sun in the elliptical orbit, the sun as one of its focus.

The line joining sun and planet sweeps the equal area in equal time interval i.e. Areal velocity is constant.

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March)

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Let us assume that our galaxy consists of 2.5 × 1011 stars each of one solar mass. How long will a star at a distance of 50,000 ly from the galactic centre take to complete one revolution? Take the diameter of the Milky Way to be 105 ly


A comet orbits the Sun in a highly elliptical orbit. Does the comet have a constant (a) linear speed, (b) angular speed, (c) angular momentum, (d) kinetic energy, (e) potential energy, (f) total energy throughout its orbit? Neglect any mass loss of the comet when it comes very close to the Sun.


A Saturn year is 29.5 times the earth year. How far is the Saturn from the sun if the earth is 1.50 ×108 km away from the sun?


State Kepler's laws of planetary motion.


Let the period of revolution of a planet at a distance R from a star be T. Prove that if it was at a distance of 2R from the star, its period of revolution will be \[\sqrt{8}\] T.


Identify the law shown in the figure and state three respective laws.


Answer the following question.

State Kepler’s law of equal areas.


Answer the following question in detail.

State Kepler’s three laws of planetary motion.


Observe the given figure showing the orbit of a planet moving around the Sun and write the three laws related to it:


The orbit of a planet moving around the Sun


State Kepler’s laws.


The mass and radius of earth is 'Me' and 'Re' respectively and that of moon is 'Mm' and 'Rm' respectively. The distance between the centre of the earth and that of moon is 'D'. The minimum speed required for a body (mass 'm') to project from a point midway between their centres to escape to infinity is ______.


The earth moves around the sun in an elliptical orbit as shown in the figure. The ratio, `"OA"/"OB"` = x. The ratio of the speed of the earth at Band at A is ______.


To verify Kepler's third law graphically four students plotted graphs. Student A plotted a graph of T (period of revolution of planets) versus r (average distance of planets from the sun) and found the plot is straight line with slope 1.85. Student B plotted a graph of T2 v/s r3 and found the plot is straight line with slope 1.39 and negative Y-intercept. Student C plotted graph of log T v/s log r and found the plot is straight line with slope 1.5. Student D plotted graph of log T v/s log r and found the plot is straight line with slope 0.67 and with negative X-intercept. The correct graph is of student


In our solar system, the inter-planetary region has chunks of matter (much smaller in size compared to planets) called asteroids. They ______.


If the sun and the planets carried huge amounts of opposite charges ______.

  1. all three of Kepler’s laws would still be valid.
  2. only the third law will be valid.
  3. the second law will not change.
  4. the first law will still be valid.

Supposing Newton’s law of gravitation for gravitation forces F1 and F2 between two masses m1 and m2 at positions r1 and r2 read F1 = – F2 = `- r_12/r_12^3 GM_0^2 ((m_1m_2)/M_0^2)^n` where M0 is a constant of dimension of mass r12 = r1 – r2 and n is a number. in such a case.

  1. the acceleration due to gravity on earth will be different for different objects.
  2. none of the three laws of Kepler will be valid.
  3. only the third law will become invalid.
  4. for n negative, an object lighter than water will sink in water.

Out of aphelion and perihelion, where is the speed of the earth more and why?


A star like the sun has several bodies moving around it at different distances. Consider that all of them are moving in circular orbits. Let r be the distance of the body from the centre of the star and let its linear velocity be v, angular velocity ω, kinetic energy K, gravitational potential energy U, total energy E and angular momentum l. As the radius r of the orbit increases, determine which of the above quantities increase and which ones decrease.


Earth’s orbit is an ellipse with eccentricity 0.0167. Thus, earth’s distance from the sun and speed as it moves around the sun varies from day to day. This means that the length of the solar day is not constant through the year. Assume that earth’s spin axis is normal to its orbital plane and find out the length of the shortest and the longest day. A day should be taken from noon to noon. Does this explain variation of length of the day during the year?


A satellite is in an elliptic orbit around the earth with aphelion of 6R and perihelion of 2 R where R= 6400 km is the radius of the earth. Find eccentricity of the orbit. Find the velocity of the satellite at apogee and perigee. What should be done if this satellite has to be transferred to a circular orbit of radius 6R ?

[G = 6.67 × 10–11 SI units and M = 6 × 1024 kg]


The maximum and minimum distances of a comet from the Sun are 1.6 × 1012 m and 8.0 × 1010 m respectively. If the speed of the comet at the nearest point is 6 × 104 ms-1, the speed at the farthest point is ______.


A planet revolving in an elliptical orbit has:

  1. a constant velocity of revolution.
  2. has the least velocity when it is nearest to the sun.
  3. its areal velocity is directly proportional to its velocity.
  4. areal velocity is inversely proportional to its velocity.
  5. to follow a trajectory such that the areal velocity is constant.

Choose the correct answer from the options given below:


lf the angular momentum of a planet of mass m, moving around the Sun in a circular orbit is L, about the center of the Sun, and its areal velocity is ______.


Halley's Comet revolves around the sun for a time period of 76 years. The aphelion distance if perihelion is given by 8.9 × 1010 m, will be ______.

(Take, the mass of sun = 2 × 1030 kg and G = 6.67 × 10-11 Nm3/kg2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×