Advertisements
Advertisements
Question
The following data has been arranged in ascending order.
0, 1, 2, 3, x + 1, x + 5, 20, 21, 26, 29.
Find the value of x, if the median is 5.
Solution
Data in ascending order:
0, 1, 2, 3, x + 1, x + 5, 20, 21, 26, 29.
Here, total number of observation = n = 10 (even)
Median = 5
⇒ `(("n"/2)^"th" "term" + ("n"/2 + 1)^"th" "term")/(2)` = 5
⇒ `(5^"th" "term" + 6^"th" "term")/(2)` = 5
⇒ `((x + 1) + (x + 5))/(2)` = 5
⇒ 2x + 6 = 10
⇒ 2x = 4
⇒ x = 2.
APPEARS IN
RELATED QUESTIONS
In a malaria epidemic, the number of cases diagnosed were as follows:
Date July | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Num | 5 | 12 | 20 | 27 | 46 | 30 | 31 | 18 | 11 | 5 | 0 | 1 |
On what days do the mode and upper and lower quartiles occur?
The marks of 20 students in a test were as follows:
2, 6, 8, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 18, 19 and 20.
Calculate:
- the mean
- the median
- the mode
The mean of the following distribution in 52 and the frequency of class interval 30-40 'f' find f
C.I | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
freq | 5 | 3 | f | 7 | 2 | 6 | 13 |
Find the mean of the following frequency distribution by the step deviation method :
Class | 100-110 | 110-120 | 120-130 | 130-140 | 140-150 |
Frequency | 15 | 18 | 32 | 25 | 10 |
Draw a histogram for the following distribution and estimate the mode:
Mangoes | 0-9 | 10-19 | 20-29 | 30-39 | 40-49 | 50-59 |
No. of trees | 10 | 16 | 20 | 14 | 6 | 4 |
Find the median of:
241, 243, 347, 350, 327, 299, 261, 292, 271, 258 and 257
The median of the data 12, 14, 23, 25, 34, 11, 42, 45, 32, 22, 44 is ___________
The median class for the given distribution is:
Class Interval | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 |
Cumulative Frequency | 2 | 6 | 11 | 18 |
For the given data given below, calculate the mean of its median and mode.
6, 2, 5, 4, 3, 4, 4, 2, 3
The marks of 200 students in a test were recorded as follows:
Marks % |
0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
No. of students |
5 | 7 | 11 | 20 | 40 | 52 | 36 | 15 | 9 | 5 |
Using graph sheet draw ogive for the given data and use it to find the,
- median,
- number of students who obtained more than 65% marks
- number of students who did not pass, if the pass percentage was 35.