Advertisements
Advertisements
Question
The mean of a certain number of observations is 32. Find the resulting mean, if the observation is, decreased by 7
Solution
Observed mean = 32
Decreased by = 7
∴ Resulting mean = 32 − 7 = 25
APPEARS IN
RELATED QUESTIONS
A boy scored following marks in various class tests during a term; each test being marked out of 20.
15, 17, 16, 7, 10, 12, 14, 16, 19, 12 and 16
What are his median marks?
A boy scored following marks in various class tests during a term; each test being marked out of 20.
15, 17, 16, 7, 10, 12, 14, 16, 19, 12 and 16
What are his mean marks?
The marks obtained by 120 students in a mathematics test is given below:
Marks | No. of students |
0 – 10 | 5 |
10 – 20 | 9 |
20 – 30 | 16 |
30 – 40 | 22 |
40 – 50 | 26 |
50 – 60 | 18 |
60 – 70 | 11 |
70 – 80 | 6 |
80 – 90 | 4 |
90 – 100 | 3 |
Draw an ogive for the given distributions on a graph sheet. Use a suitable scale for your ogive. Use your ogive to estimate:
- the median
- the number of student who obtained more than 75% in test.
- the number of students who did not pass in the test if the pass percentage was 40.
- the lower quartile.
The monthly income of a group of 320 employees in a company is given below:
Monthly income (thousands) | No. of employees |
6-7 | 20 |
7-8 | 45 |
8-9 | 65 |
9-10 | 95 |
10-11 | 60 |
11-12 | 30 |
12-13 | 5 |
Draw an ogive of the distribution on a graph paper taking 2 cm = Rs. 1000 on one axis and 2 cm = 50 employees on the other axis. From the graph detemine:
- the median wage.
- number of employee whose income is below Rs. 8,500.
- If salary of a senior employee is above Rs. 11,500, find the number of senior employee in the company.
- the upper quartile.
Find the median of the following:
11, 8, 15, 5, 9, 4, 19, 6, 18
Find the median of the following frequency distribution :
Weight(kg) | 36 | 38 | 40 | 42 | 44 |
No. of students | 11 | 26 | 29 | 24 | 10 |
The mean of a certain number of observations is 32. Find the resulting mean, if the observation is, increased by 60%.
The heights (in cm) of 8 girls of a class are 140, 142, 135, 133, 137, 150, 148 and 138 respectively. Find the mean height of these girls and their median height.
The median class for the given distribution is:
Class Interval | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 |
Cumulative Frequency | 2 | 6 | 11 | 18 |
Find the median of first nine even natural numbers.