English

The Period of a Conical Pendulum in Terms of Its Length (l), Semivertical Angle (θ) and Acceleration Due to Gravity (g) Is: - Physics

Advertisements
Advertisements

Question

The period of a conical pendulum in terms of its length (l), semi-vertical angle (θ) and acceleration due to gravity (g) is:

Options

  • `1/(2pi)sqrt((l costheta)/g)`

  • `1/(2pi)sqrt((l sintheta)/g)`

  • `4pisqrt((lcostheta)/(4g))`

  • `4pisqrt((l tantheta)/g)`

MCQ

Solution

The time period of a conical pendulum is

`T=4pisqrt((lcostheta)/(4g))`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

When the length of a simple pendulum is decreased by 20 cm, the period changes by 10%. Find the original length of the pendulum.


A spring having with a spring constant 1200 N m–1 is mounted on a horizontal table as shown in Fig. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.

Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.


let us take the position of mass when the spring is unstretched as x = 0, and the direction from left to right as the positive direction of the x-axis. Give as a function of time t for the oscillating mass if at the moment we start the stopwatch (= 0), the mass is

(a) at the mean position,

(b) at the maximum stretched position, and

(c) at the maximum compressed position.

In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?


The acceleration due to gravity on the surface of moon is 1.7 ms–2. What is the time period of a simple pendulum on the surface of moon if its time period on the surface of earth is 3.5 s? (on the surface of earth is 9.8 ms–2)


Answer the following questions:

A time period of a particle in SHM depends on the force constant and mass of the particle: `T = 2pi sqrt(m/k)` A simple pendulum executes SHM approximately. Why then is the time 

 


Answer the following questions:

A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall?


Answer the following questions:

What is the frequency of oscillation of a simple pendulum mounted in a cabin that is freely falling under gravity?


The cylindrical piece of the cork of density of base area and height floats in a liquid of density `rho_1`. The cork is depressed slightly and then released. Show that the cork oscillates up and down simple harmonically with a period

`T = 2pi sqrt((hrho)/(rho_1g)` 

where ρ is the density of cork. (Ignore damping due to viscosity of the liquid).


A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction or damping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time = 0. Determine the amplitude of the resulting oscillations in terms of the parameters ω, x0 and v0. [Hint: Start with the equation acos (ωt) and note that the initial velocity is negative.]


A clock regulated by seconds pendulum, keeps correct time. During summer, length of pendulum increases to 1.005 m. How much will the clock gain or loose in one day?

(g = 9.8 m/s2 and π = 3.142)


Show that motion of bob of the pendulum with small amplitude is linear S.H.M. Hence obtain an expression for its period. What are the factors on which its period depends?


If the particle starts its motion from mean position, the phase difference between displacement and acceleration is ______.


A simple pendulum has a time period of T1 when on the earth's surface and T2 when taken to a height R above the earth's surface, where R is the radius of the earth. The value of `"T"_2 // "T"_1` is ______. 


The period of oscillation of a simple pendulum of constant length at the surface of the earth is T. Its time period inside mine will be ______.


Which of the following statements is/are true for a simple harmonic oscillator?

  1. Force acting is directly proportional to displacement from the mean position and opposite to it.
  2. Motion is periodic.
  3. Acceleration of the oscillator is constant.
  4. The velocity is periodic.

Two identical springs of spring constant K are attached to a block of mass m and to fixed supports as shown in figure. When the mass is displaced from equilibrium position by a distance x towards right, find the restoring force


When will the motion of a simple pendulum be simple harmonic?


The length of a second’s pendulum on the surface of earth is 1 m. What will be the length of a second’s pendulum on the moon?


Find the time period of mass M when displaced from its equilibrium position and then released for the system shown in figure.


A tunnel is dug through the centre of the Earth. Show that a body of mass ‘m’ when dropped from rest from one end of the tunnel will execute simple harmonic motion.


In the given figure, a mass M is attached to a horizontal spring which is fixed on one side to a rigid support. The spring constant of the spring is k. The mass oscillates on a frictionless surface with time period T and amplitude A. When the mass is in equilibrium position, as shown in the figure, another mass m is gently fixed upon it. The new amplitude of oscillation will be:


A pendulum of mass m and length ℓ is suspended from the ceiling of a trolley which has a constant acceleration a in the horizontal direction as shown in the figure. Work done by the tension is ______.

(In the frame of the trolley)

 


A particle at the end of a spring executes simple harmonic motion with a period t1, while the corresponding period for another spring is t2. If the period of oscillation with the two springs in series is T, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×