Advertisements
Advertisements
Question
The rate of change of demand (x) of a commodity with respect to its price (y) is ______ if y = xe–x + 7
Solution
`"e"^x/(1 - x)`
APPEARS IN
RELATED QUESTIONS
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following:
y = `sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1(y) in the following: y = `sqrt(2 - sqrt(x)`
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = 2x + 3
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f–1(y) in the following: y = `log_2(x/2)`
Find the derivative of the inverse function of the following : y = x2·ex
Find the derivative of the inverse of the following functions, and also find their value at the points indicated against them. y = 3x2 + 2logx3
Using derivative, prove that: tan –1x + cot–1x = `pi/(2)`
Using derivative, prove that: sec–1x + cosec–1x = `pi/(2)` ...[for |x| ≥ 1]
If y = f(x) is a differentiable function of x, then show that `(d^2x)/(dy^2) = -(dy/dx)^-3.("d^2y)/(dx^2)`.
Find the marginal demand of a commodity where demand is x and price is y.
y = `(5"x" + 9)/(2"x" - 10)`
If y = `"x"^3 + 3"xy"^2 + 3"x"^2"y"` Find `"dy"/"dx"`
Let f(x) = x5 + 2x – 3 find (f−1)'(-3)
Choose the correct alternative:
If x = at2, y = 2at, then `("d"^2y)/("d"x^2)` = ?
If `int (dx)/(4x^2 - 1)` = A log `((2x - 1)/(2x + 1))` + c, then A = ______.
Find `dy/dx`, if y = `sec^-1((1 + x^2)/(1 - x^2))`.
If y = `cos^-1 sqrt((1 + x^2)/2`, then `dy/dx` = ______.
If y = `sin^-1((2tanx)/(1 + tan^2x))`, find `dy/dx`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10x + 25x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if
y = `12 + 10x + 25x^2`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if `y=12+10x+25x^2`