Advertisements
Advertisements
Question
The tower of a bridge, hung in the form of a parabola have their tops 30 meters above the roadway and are 200 meters apart. If the cable is 5 meters above the roadway at the centre of the bridge, find the length of the vertical supporting cable 30 meters from the centre.
Solution
Let CAB be the cable of the bridge and X'OX be the roadway.
Let A be the centre of the bridge.
From the figure, vertex of parabola is at A(0, 5).
Let the equation of parabola be
x2 = 4b (y – 5) ...(i)
Since the parabola passes through (100, 30).
Substituting x = 100 and y = 30 in (i), we get
1002 = 4b (30 – 5)
∴ 1002 = 4b(25)
∴ 1002 = 100b
∴ b = `(100 xx 100)/100`
∴ b = 100
Substituting the value of b in (i), we get
x2 = 400(y – 5) ...(iii)
Let l metres be the length of vertical supporting cable.
Then P(30, l) lies on (ii).
∴ 302 = 400 (l – 5)
∴ 900 = 400 (l – 5)
∴ `9/4` = l – 5
∴ l = `9/4 + 5`
∴ l = `29/4"m"`
∴ l = 7.25 m
∴ The length of vertical supporting cable is 7.25 m.
APPEARS IN
RELATED QUESTIONS
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
y2 = –20x
Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:
3x2 = 8y
Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (3, 4)
Find coordinates of the point on the parabola. Also, find focal distance.
y2 = 12x whose parameter is `1/3`
Find coordinates of the point on the parabola. Also, find focal distance.
2y2 = 7x whose parameter is –2
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.
Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3
Find the equation of tangent to the parabola y2 = 36x from the point (2, 9)
Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3
A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.
Show that the circle touches the directrix of the parabola.
Select the correct option from the given alternatives:
The line y = mx + 1 is a tangent to the parabola y2 = 4x, if m is _______
Select the correct option from the given alternatives:
The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________
Select the correct option from the given alternatives:
The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______
Select the correct option from the given alternatives:
Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________
Select the correct option from the given alternatives:
The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________
Select the correct option from the given alternatives:
If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________
Answer the following:
For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:
2y2 = 17x
Answer the following:
Find the co-ordinates of a point of the parabola y2 = 8x having focal distance 10
Answer the following:
Find the equations of the tangents to the parabola y2 = 9x through the point (4, 10).
Answer the following:
Show that the two tangents drawn to the parabola y2 = 24x from the point (−6, 9) are at the right angle
Answer the following:
The slopes of the tangents drawn from P to the parabola y2 = 4ax are m1 and m2, show that m1 − m2 = k, where k is a constant.
Answer the following:
The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q
The length of latus-rectum of the parabola x2 + 2y = 8x - 7 is ______.
The area of the triangle formed by the lines joining vertex of the parabola x2 = 12y to the extremities of its latus rectum is ______.
The equation of the directrix of the parabola 3x2 = 16y is ________.
Let P: y2 = 4ax, a > 0 be a parabola with focus S. Let the tangents to the parabola P make an angle of `π/4` with the line y = 3x + 5 touch the parabola P at A and B. Then the value of a for which A, B and S are collinear is ______.
Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.
Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.
If the line `y - sqrt(3)x + 3` = 0 cuts the parabola y2 = x + 2 at A and B, then PA. PB is equal to `("where coordinates of P are" (sqrt(3), 0))` ______.
Which of the following are not parametric coordinates of any point on the parabola y2 = 4ax?
The equation to the line touching both the parabolas y2 = 4x and x2 = –32y is ______.
If the vertex = (2, 0) and the extremities of the latus rectum are (3, 2) and (3, –2) then the equation of the parabola is ______.
The equation of the line touching both the parabolas y2 = x and x2 = y is ______.
Two parabolas with a common vertex and with axes along x-axis and y-axis, respectively, intersect each other in the first quadrant. if the length of the latus rectum of each parabola is 3, then the equation of the common tangent to the two parabolas is ______.