English

Two bodies of masses 10 kg and 20 kg respectively kept on a smooth, horizontal surface are tied to the ends of a light string. A horizontal force F = 600 N is - Physics

Advertisements
Advertisements

Question

Two bodies of masses 10 kg and 20 kg respectively kept on a smooth, horizontal surface are tied to the ends of a light string. A horizontal force F = 600 N is applied to

  1. A,
  2. B along the direction of string. What is the tension in the string in each case?
Numerical

Solution

Horizontal force, F = 600 N

Mass of body A, m1 = 10 kg

Mass of body B, m2 = 20 kg

Total mass of the system, m = m1 + m2 = 30 kg

Using Newton’s second law of motion, the acceleration (a) produced in the system can be calculated as:

F = ma

`:.a = F/m = 600/30 = 20 "m/s"^2`

(i) When force F is applied to body A:

The equation of motion can be written as:

F-T = m1a

T = F - m1a

= 600 – 10 × 20 = 400 N

(ii) When force F is applied to body B:

The equation of motion can be written as:

F – T = m2a

T = F – m2a

∴T = 600 – 20 × 20 = 200 N

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Laws of Motion - Exercises [Page 111]

APPEARS IN

NCERT Physics [English] Class 11
Chapter 5 Laws of Motion
Exercises | Q 15 | Page 111

RELATED QUESTIONS

A monkey of mass 40 kg climbs on a rope in given Figure which can stand a maximum tension of 600 N. In which of the following cases will the rope break: the monkey

(a) climbs up with an acceleration of 6 m s–2

(b) climbs down with an acceleration of 4 m s–2

(c) climbs up with a uniform speed of 5 m s–1

(d) falls down the rope nearly freely under gravity?

(Ignore the mass of the rope).


A block of mass 15 kg is placed on a long trolley. The coefficient of static friction between the block and the trolley is 0.18. The trolley accelerates from rest with 0.5 ms–2 for 20 s and then moves with uniform velocity. Discuss the motion of the block as viewed by (a) a stationary observer on the ground, (b) an observer moving with the trolley.


 car moving at 40 km/hr is to be stopped by applying brakes in the next 4 m. If the car weighs 2000 kg, what average force must be applied to stop it?


In a TV picture tube, electrons are ejected from the cathode with negligible speed and they attain a velocity of 5 × 106 m/s in travelling one centimetre. Assuming straight-line motion, find the constant force exerted on the electrons. The mass of an electron is 9.1 × 10−31 kg.


A block is kept on the floor of an elevator at rest. The elevator starts descending with an acceleration of 12 m/s2. Find the displacement of the block during the first 0.2 s after the start. Take g = 10 m/s2.


An aeroplane is moving uniformly at a constant height under the action of two forces (i) Upward force (lift) and (ii) Downward force (weight). What is the net force on the aeroplane?


An electron of mass 9 × 10−31 kg is moving with a linear velocity of 6 × 107 ms−1. Calculate the linear momentum of electron.


What do you mean by linear momentum of a body? A force causes an acceleration of 10 ms-2 in a body of mass 1 kg. What acceleration will be caused by the same force in a body of mass 4 kg?


A metre scale is moving with uniform velocity. This implies ______.


Figure shows (x, t), (y, t ) diagram of a particle moving in 2-dimensions.


(a)


(b)

If the particle has a mass of 500 g, find the force (direction and magnitude) acting on the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×