English
Karnataka Board PUCPUC Science Class 11

Two Long Strings a and B, Each Having Linear Mass Density 1 ⋅ 2 × 10 − 2 K G M − 1 , Are Stretched by Different Tensions 4⋅8 N and 7⋅5 N Respectively and Are Kept Parallel to Each - Physics

Advertisements
Advertisements

Question

Two long strings A and B, each having linear mass density
\[1 \cdot 2 \times  {10}^{- 2}   kg   m^{- 1}\] , are stretched by different tensions 4⋅8 N and 7⋅5 N respectively and are kept parallel to each other with their left ends at x = 0. Wave pulses are produced on the strings at the left ends at t = 0 on string A and at t = 20 ms on string B. When and where will the pulse on B overtake that on A?

Sum

Solution

Given,
Linear density of each of two long strings A and B=\[1 . 2 \times  {10}^{- 2}   kg/m\]
String A is stretched by tension Ta= 4.8 N.
String B is stretched by tension Tb= 7.5 N.
Let va and vb be the speeds of the waves in strings A and B.
Now,

\[v_a  = \sqrt{\frac{T_a}{m}}\] 

\[ \Rightarrow  v_a  = \sqrt{\frac{\left( 4 . 8 \right)}{\left( 1 . 2 \times {10}^{- 2} \right)}} = 20  m/s\] 

\[ v_b  = \sqrt{\frac{T_b}{m}}\] 

\[ \Rightarrow  v_b  = \sqrt{\frac{7 . 5}{\left( 1 . 2 \times {10}^{- 2} \right)}} = 25  m/s\] 

\[ t_1  = 0  \text{ in  string  A }\] 

\[ t_2  = 0 + 20  ms = 20 \times  {10}^{- 3}  = 0 . 02  s\]
Distance travelled by the wave in 0.02 s in string A:
s
\[= 20 \times 0 . 02 = 0 . 4  m\]
Relative speed between the wave in string A and the wave in string B, v'
\[= 25 - 20 = 5  m/s\]
Time taken by the wave in string B to overtake the wave in string A = Time taken by the wave in string B to cover 0.4 m
\[t' = \frac{s}{v'} = \frac{0 . 4}{5} = 0 . 08  s\]

shaalaa.com
The Speed of a Travelling Wave
  Is there an error in this question or solution?
Chapter 15: Wave Motion and Waves on a String - Exercise [Page 325]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 15 Wave Motion and Waves on a String
Exercise | Q 27 | Page 325

RELATED QUESTIONS

A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20 °C = 343 m s–1.


A hospital uses an ultrasonic scanner to locate tumours in a tissue. What is the wavelength of sound in the tissue in which the speed of sound is 1.7 km s–1? The operating frequency of the scanner is 4.2 MHz.


(i) For the wave on a string described in Exercise 15.11, do all the points on the string oscillate with the same (a) frequency, (b) phase, (c) amplitude? Explain your answers. (ii) What is the amplitude of a point 0.375 m away from one end?


A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of 45 Hz. The mass of the wire is 3.5 × 10–2 kg and its linear mass density is 4.0 × 10–2 kg m–1. What is (a) the speed of a transverse wave on the string, and (b) the tension in the string?


A metre-long tube open at one end, with a movable piston at the other end, shows resonance with a fixed frequency source (a tuning fork of frequency 340 Hz) when the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the temperature of the experiment. The edge effects may be neglected.


A train, standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air. (i) What is the frequency of the whistle for a platform observer when the train (a) approaches the platform with a speed of 10 m s–1, (b) recedes from the platform with a speed of 10 m s–1? (ii) What is the speed of sound in each case? The speed of sound in still air can be taken as 340 m s–1.


Show that the particle speed can never be equal to the wave speed in a sine wave if the amplitude is less than wavelength divided by 2π.


The displacement of the particle at x = 0 of a stretched string carrying a wave in the positive x-direction is given f(t) = A sin (t/T). The wave speed is  v. Write the wave equation.


A wave propagates on a string in the positive x-direction at a velocity \[\nu\] \[t =  t_0\] is given by \[g\left( x, t_0 \right) = A  \sin  \left( x/a \right)\]. Write the wave equation for a general time t.


A wave travels along the positive x-direction with a speed of 20 m s−1. The amplitude of the wave is 0⋅20 cm and the wavelength 2⋅0 cm. (a) Write the suitable wave equation which describes this wave. (b) What is the displacement and velocity of the particle at x= 2⋅0 cm at time = 0 according to the wave equation written? Can you get different values of this quantity if the wave equation is written in a different fashion?


A string of length 40 cm and weighing 10 g is attached to a spring at one end and to a fixed wall at the other end. The spring has a spring constant of 160 N m−1 and is stretched by 1⋅0 cm. If a wave pulse is produced on the string near the wall, how much time will it take to reach the spring?


A 200 Hz wave with amplitude 1 mm travels on a long string of linear mass density 6 g m−1 kept under a tension of 60 N. (a) Find the average power transmitted across a given point on the string. (b) Find the total energy associated with the wave in a 2⋅0 m long portion of the string.


A 2⋅00 m-long rope, having a mass of 80 g, is fixed at one end and is tied to a light string at the other end. The tension in the string is 256 N. (a) Find the frequencies of the fundamental and the first two overtones. (b) Find the wavelength in the fundamental and the first two overtones.


The string of a guitar is 80 cm long and has a fundamental frequency of 112 Hz. If a guitarist wishes to produce a frequency of 160 Hz, where should the person press the string?


A man standing unsymmetrical position between two mountains and fires a gun. He hears the first echo after 1.5 s and the second echo after 2.5 s. If the speed of sound in air is 340 m/s, then the distance between the mountains will be ______ 


What is the interference of sound waves? 


A string 1 m long is fixed at one end. The other end is moved up and down with a frequency of 20 Hz. Due to this, a stationary wave with four complete loops gets produced on the string. Find the speed of the progressive wave which produces the stationary wave. 


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of 4 m.


At what temperatures (in °C) will the speed of sound in air be 3 times its value at O°C?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×