English

Two parallel plates have a potential difference of 10 V between them. If the plates are 0.5 mm apart, what will be the strength of electric charge. - Physics

Advertisements
Advertisements

Question

Two parallel plates have a potential difference of 10 V between them. If the plates are 0.5 mm apart, what will be the strength of electric charge.

Numerical

Solution

Given: V = 10 V, d = 0.5 mm = 0.5 × 10−3 m

To find: Strength of electric field (E)

Formula: E = `"V"/"d"`

Calculation: From the formula,

E = `10/(0.5xx10^-3`

= 20 × 103 V/m

The strength of the electric field will be 20 × 103 V/m

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Electrostatics - Exercises [Page 206]

APPEARS IN

Balbharati Physics [English] 11 Standard Maharashtra State Board
Chapter 10 Electrostatics
Exercises | Q 2. (iv) | Page 206

RELATED QUESTIONS

Two large conducting plates are placed parallel to each other with a separation of 2⋅00 cm between them. An electron starting from rest near one of the plates reaches the other plate in 2⋅00 microseconds. Find the surface charge density on the inner surfaces.


A positive charge Q is distributed uniformly over a circular ring of radius R. A particle of mass m, and a negative charge q, is placed on its axis at a  distance x from the centre. Find the force on the particle. Assuming x << R, find the time period of oscillation of the particle if it is released from there . 


A rod of length L has a total charge Q distributed uniformly along its length. It is bent in the shape of a semicircle. Find the magnitude of the electric field at the centre of curvature of the semicircle. 


A positively charged glass rod is brought close to a metallic rod isolated from ground. The charge on the side of the metallic rod away from the glass rod will be ______.


Choose the correct option.

An electron is placed between two parallel plates connected to a battery. If the battery is switched on, the electron will


Choose the correct option.

A charge of + 7 μC is placed at the centre of two concentric spheres with radius 2.0 cm and 4.0 cm respectively. The ratio of the flux through them will be


Answer the following question.

What is the magnitude of the charge on an electron?


One metallic sphere A is given a positive charge whereas another identical metallic sphere B of exactly the same mass as A is given an equal amount of negative charge. Then


When 1019 electrons are removed from a neutral metal plate through some process, the electric charge on it is ______


A conducting sphere of radius 0.104 m has an unknown charge. If the electric field at 0.20 m from the centre of the sphere is 1.5 x 103 NC-1 and points radially inward, what is the electric flux?


Electric charge is a property of ______.


Conductors are materials that allow ______.


In figure two positive charges q2 and q3 fixed along the y-axis, exert a net electric force in the + x-direction on a charge q1 fixed along the x-axis. If a positive charge Q is added at (x, 0), the force on q______.

(1)
(2)

Assertion: The positive charge particle is placed in front of a spherical uncharged conductor. The number of lines of forces terminating on the sphere will be more than those emerging from it.

Reason: The surface charge density at a point on the sphere nearest to the point charge will be negative and maximum in magnitude compared to other points on the sphere.


Charge is ______.

If an object possesses an electric charge, it is said to be electrified or ... A ... When it has no charge, it is said to be ... B ... Here, A and B refer to ______.

Electric charge is uniformly distributed along a long straight wire of radius 1 mm. The charge per cm length of the wire is Q coulomb. Another cylindrical surface of radius 50 cm and length 1 m symmetrically enclose the wire as shown in the figure. The total electric flux passing through the cylindrical surface is ______.


Electric field lines provide information about ______.


When a glass rod is rubbed with silk, it ______. 


A metallic spherical shell has an inner radius R1 and outer radius R2. A charge Q is placed at the centre of the spherical cavity. What will be surface charge density on (i) the inner surface, and (ii) the outer surface?


Total charge –Q is uniformly spread along length of a ring of radius R. A small test charge +q of mass m is kept at the centre of the ring and is given a gentle push along the axis of the ring.

  1. Show that the particle executes a simple harmonic oscillation.
  2. Obtain its time period.

Two identical metallic spheres A and B when placed at certain distance in air repel each other with a force of F. Another identical uncharged sphere C is first placed in contact with A and then in contact with B and finally placed at midpoint between spheres A and B. The force experienced by sphere C will be:


A straight infinitely long cylinder of radius R0 = 10 cm is uniformly charged with a surface charge density σ = + 10-12 C/m2. The cylinder serves as a source of electrons, with the velocity of the emitted electrons perpendicular to its surface. Electron velocity must be ______ × 105 m/s to ensure that electrons can move away, from the axis of the cylinder to a distance greater than r = 103 m.


A particle of mass m and charge q is placed at rest in a uniform electric field E and then released. The kinetic energy gained by the particle after moving a distance of y will be ______.


The electrostatic potential inside a charged spherical ball is given by `Phi = ar^2 + b`, where r is the distance from the centre a, and b are constants. Then the charge density inside the ball is ______.


Two particles A and B having the same mass have charges +q and +4q, respectively. When they are allowed to fall from rest through the same electric potential difference the ratio of their speeds vA to vB will become ______.


The potential at a point x (measured in µm) due to some charges situated on the X-axis is given by v(x) = `20/((x^2 - 4)` V. The electric field E at x = 4 µm is given by ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×