Advertisements
Advertisements
Question
Using truth table prove that p ↔ q = (p ∧ q) ∨ (~p ∧ ~q).
Solution
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
p | q | p ↔ q | ~p | ~q | p ∧ q | ~p ∧ ~q | (p ∧ q) ∨(~p∧~q) |
T | T | T | F | F | T | F | T |
T | F | F | F | T | F | F | F |
F | T | F | T | F | F | F | F |
F | F | T | T | T | F | T | T |
The entries in columns 3 and 8 are identical.
p ↔ q = (p ∧ q) ∨ (~p ∧ ~q).
Notes
[1 mark each for column 3 and column 8]
APPEARS IN
RELATED QUESTIONS
Examine whether each of the following statement patterns is a tautology or a contradiction or a contingency.
[~(~p ∧ ~q)] v q
Using truth table prove that ∼p ˄ q ≡ (p ˅ q) ˄ ∼p
Write converse, inverse contrapositive of the statement "If two triangles are not congruent then their areas are not equal.
Write the following compound statement symbolically.
The angle is right angle if and only if it is of measure 90°.
Construct the truth table of the following statement pattern.
(p ∧ ∼q) ↔ (p → q)
Construct the truth table of the following statement pattern.
(p ∧ q) ↔ (q ∨ r)
Construct the truth table of the following statement pattern.
∼ p ∧ [(p ∨ ∼ q) ∧ q]
Construct the truth table of the following statement pattern.
[p → (q → r)] ↔ [(p ∧ q) → r]
Construct the truth table of the following statement pattern.
(p ∨ ∼ q) → (r ∧ p)
If p ∧ q is false and p ∨ q is true, then ______ is not true.
Construct the truth table of the following:
∼ (∼p ∧ ∼q) ∨ q
Construct the truth table of the following:
[(p ∧ q) ∨ r] ∧ [∼r ∨ (p ∧ q)]
Construct the truth table of the following:
[(∼p ∨ q) ∧ (q → r)] → (p → r)
Determine the truth values of p and q in the following case:
(p ∨ q) is T and (p ∧ q) is T
Determine the truth values of p and q in the following case:
(p ∨ q) is T and (p ∨ q) → q is F
Determine the truth values of p and q in the following case:
(p ∧ q) is F and (p ∧ q) → q is T
Express the following statement in symbolic form.
e is a vowel or 2 + 3 = 5
Express the following statement in symbolic form.
Mango is a fruit but potato is a vegetable.
Express the following statement in symbolic form.
I like playing but not singing.
Write the truth value of the following statement.
Earth is a planet and Moon is a star.
Write the truth value of the following statement.
16 is an even number and 8 is a perfect square.
Write the truth value of the following statement.
A quadratic equation has two distinct roots or 6 has three prime factors.
Write the negation of the following statement.
All men are animals.
Write the negation of the following statement.
It is false that Nagpur is capital of Maharashtra
Write the truth value of the negation of the following statement.
`sqrt5` is an irrational number.
Write the truth value of the negation of the following statement.
London is in England.
Write the following statement in symbolic form.
Even though it is not cloudy, it is still raining.
Write the following statement in symbolic form.
Stock prices are high if and only if stocks are rising.
Write the following statement in symbolic form.
If Kutub-Minar is in Delhi then Taj-Mahal is in Agra.
Find the truth value of the following statement.
It is not true that 3 − 7i is a real number.
Find the truth value of the following statement.
If a joint venture is a temporary partnership, then discount on purchase is credited to the supplier.
Find the truth value of the following statement.
3 is a prime number and an odd number.
If p and q are true and r and s are false, find the truth value of the following compound statement.
p ∧ (q ∧ r)
If p and q are true and r and s are false, find the truth value of the following compound statement.
(p → q) ∨ (r ∧ s)
If p and q are true and r and s are false, find the truth value of the following compound statement.
~ [(~ p ∨ s) ∧ (~ q ∧ r)]
If p and q are true and r and s are false, find the truth value of the following compound statement.
~ [p ∨ (r ∧ s)] ∧ ~ [(r ∧ ~ s) ∧ q]
Assuming that the following statement is true,
p : Sunday is holiday,
q : Ram does not study on holiday,
find the truth values of the following statements.
If Sunday is not holiday then Ram studies on holiday.
If p : He swims
q : Water is warm
Give the verbal statement for the following symbolic statement.
p ↔ ~ q
If p : He swims
q : Water is warm
Give the verbal statement for the following symbolic statement.
~ (p ∨ q)
If p : He swims
q : Water is warm
Give the verbal statement for the following symbolic statement.
q → p
If p : He swims
q : Water is warm
Give the verbal statement for the following symbolic statement.
q ∧ ~ p
Fill in the blanks :
Conjunction of two statement p and q is symbolically written as ______.
Fill in the blanks :
Negation of “some men are animal” is –––––––––.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
Mona likes Mathematics and Physics.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
3 is prime number if 3 is perfect square number.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If Kiran drives the car, then Sameer will walk.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
The necessary condition for existence of a tangent to the curve of the function is continuity.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
The drug is effective though it has side effects.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If a real number is not rational, then it must be irrational.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
Even though it is not cloudy, it is still raining.
Assuming the first statement p and second as q. Write the following statement in symbolic form.
If the question paper is not easy then we shall not pass.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
If proof is lengthy then it is interesting.
If p : Proof is lengthy.
q : It is interesting.
Express the following statement in symbolic form.
It is not true that the proof is lengthy but it is interesting.
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
(p ∧ q) ∨ r
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
∼ p ∨ q
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
p→(q ∨ r)
Let p : Sachin wins the match.
q : Sachin is a member of Rajya Sabha.
r : Sachin is happy.
Write the verbal statement of the following.
∼ (p ∨ q) ∧ r
Rewrite the following statement without using conditional –
(Hint : p → q ≡ ∼ p ∨ q)
If price increases, then demand falls.
Rewrite the following statement without using conditional –
(Hint : p → q ≡ ∼ p ∨ q)
If demand falls, then price does not increase.
Write the negation of the following.
If ∆ABC is not equilateral, then it is not equiangular.
Write the negation of the following.
An angle is a right angle if and only if it is of measure 90°.
Write the negation of the following.
Kanchanganga is in India and Everest is in Nepal.
Write the negation of the following.
If x ∈ A ∩ B, then x ∈ A and x ∈ B.
Rewrite the following statement without using the connective ‘If ... then’.
If a quadrilateral is rhombus then it is not a square.
Write the negation of the following statement.
∀ n ∈ N, n + 3 > 9.
Write the negation of the following statement.
∃ x ∈ A, such that x + 5 < 11.
Without using truth table prove that:
~ (p ∨ q) ∨ (~ p ∧ q) ≡ ~ p
Write the negation of the statement “An angle is a right angle if and only if it is of measure 90°”
Write the following statements in symbolic form
Even though it is not cloudy, it is still raining
Using truth table prove that p ˅ (q ˄ r) ≡ (p ˅ q) ˄ (p ˅ r)
Without using truth table show that -
(p ˅ q) ˄ (∼p v ∼q) ≡ (p ∧ ∼q) ˄ (∼p ∧ q)
Write the negation of p → q
Choose the correct alternative:
Negation of p → (p ˅ ~q) is
State whether the following statement is True or False:
The converse of inverse of ~ p → q is q → ~ p
Negation of “Some men are animal “ is ______
Write the negation of the statement “An angle is a right angle if and only if it is of measure 90°”
Write the following statements in symbolic form.
If Qutub – Minar is in Delhi then Taj-Mahal is in Agra
Given 'p' and 'q' as true and 'r' as false, the truth values of p v (q ∧ ~r) and (p → r) ∧ q are respectively
The symbolic form of the following circuit is (where p, q represents switches S1 and S2 closed respectively)
If q: There are clouds in the sky then p: it is raining. The symbolic form is ______
If c denotes the contradiction then the dual of the compound statement ∼p ∧ (q ∨ c) is ______
If p and q are true and rands are false statements, then which of the following is true?
The negation of (p ∨ ∼q) ∧ q is ______
The negation of ∼s ∨ (∼r ∧ s) is equivalent to ______
The statement, 'If I go to school, then I will get knowledge' is equivalent to ______
The negation of the statement: "Getting above 95% marks is a necessary condition for Hema to get admission in good college'' is ______
The logical statement (∼p → q) ∧ (q → p) is equivalent to: ______
Write the converse, inverse, and contrapositive of the statement. "If 2 + 5 = 10, then 4 + 10 = 20."
Conditional of p → q is equivalent to p → ∼ q.
Which of the following is logically equivalent to `∼(∼p \implies q)`?
If p : A man is happy, q : A man is rich, then the symbolic form of ‘A man is neither happy nor rich is ______.
Converse of the statement q `rightarrow` p is ______.
The statement ∼(p ↔ ∼q) is ______.
Express the following compound statement symbolically:
Delhi is in India but Dhaka is not in Sri Lanka
From the following set of statements, select two statements which have similar meaning.
- If a man is judge, then he is honest.
- If a man is not a judge, then he is not honest.
- If a man is honest, then he is a judge.
- If a man is not honest, then he is not a judge.
If p, q are true statements and r, s are false statements, then write the truth value of the compound statement
(p `→` ∼ r) `→` (q ∧ s)
Write the negation of (p `leftrightarrow` q).
Construct the truth table for the statement pattern:
[(p → q) ∧ q] → p