English

Write the Expression for the Force, → F Acting on a Charged Particle of Charge ‘Q’, Moving with a Velocity → V in the Presence of Both Electric Field → F and Magnetic Field → B . - Physics

Advertisements
Advertisements

Question

Write the expression for the force,`vecF` acting on a charged particle of charge ‘q’, moving with a velocity `vecV` in the presence of both electric field `vecF`and magnetic field `vecB` . Obtain the condition under which the particle moves undeflected through the fields.

Solution

 Force `vecF` acting on a charge ‘q’ moving with velocity `vecV`  in the presence of both electric field `vecE`  and magnetic field `vecB` ,

`vecF =qvecE +q(vecVxxvecB)`

Consider a region in which magnetic field, electric field and velocity of charge particle are perpendicular to each other.

To move charge particle undeflected the net force acting on the particle must be zero i.e. The electric force must be equal and opposite to the magnetic force.

qE = qvB

`V=E/B`

The direction of electric and magnetic forces are in opposite direction. Their magnitudes are in such a way they cancel out each other to give net force zero so that the charge particle does not deflect.

shaalaa.com
Force on a Moving Charge in Uniform Magnetic and Electric Fields
  Is there an error in this question or solution?
2011-2012 (March) All India Set 1

RELATED QUESTIONS

A flexible wire of irregular shape, abcd, as shown in the figure, turns into a circular shape when placed in a region of magnetic field which is directed normal to the plane of the loop away from the reader. Predict the direction of the induced current in the wire.


A charged particle is whirled in a horizontal circle on a frictionless table by attaching it to a string fixed at one point. If a magnetic field is switched on in the vertical direction, the tension in the string


A charged particle moves in a gravity-free space without change in velocity. Which of the following is/are possible?
(a) E = 0, B = 0
(b) E = 0, B ≠ 0
(c) E ≠ 0, B = 0
(d) E ≠ 0, B ≠ 0


Two particles X and Y having equal charge, after being accelerated through the same potential difference enter a region of uniform magnetic field and describe circular paths of radii R1 and R2 respectively. The ratio of the mass of X to that of Y is ______.


Consider three quantities  \[x = E/B,   y = \sqrt{1/ \mu_0 \epsilon_0}\] and \[z = \frac{l}{CR}\] . Here, l is the length of a wire, C is a capacitance and R is a resistance. All other symbols have standard meanings.

(a) xy have the same dimensions.
(b) yz have the same dimensions.
(c) zx have the same dimensions.
(d) None of the three pairs have the same dimensions.


A current of 2 A enters at the corner d of a square frame abcd of side 20 cm and leaves at the opposite corner b. A magnetic field B = 0.1 T exists in the space in a direction perpendicular to the plane of the frame, as shown in the figure. Find the magnitude and direction of the magnetic forces on the four sides of the frame.


A narrow beam of singly charged potassium ions of kinetic energy 32 keV is injected into a region of width 1.00 cm with a magnetic field of strength 0.500 T, as shown in the figure. The ions are collected at a screen 95.5 cm away from the field region. If the beam contains isotopes of atomic weights 39 and 41, find the separation between the points where these isotopes strike the screen. Take the mass of a potassium ion = A (1.6 × 10−27) kg, where A is the mass number.


A particle with a charge of 5.0 µC and a mass of 5.0 × 10−12 kg is projected with a speed of 1.0 km s−1 in a magnetic field of magnitude 5.0 mT. The angle between the magnetic field and the velocity is sin−1 (0.90). Show that the path of the particle will be a helix. Find the diameter of the helix and its pitch.


When does a moving charged particle nor experience any force while moving through a uniform magnetic field?


A charged particle moves through a magnetic field in a direction perpendicular to it. Then the ______.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×