हिंदी

A (5, 4), B (-3, -2) and C (1, -8) Are the Vertices of a Triangle Abc. Find The Equations of Median Ad and Line Parallel to Ac Passing Through the Point B. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

A (5, 4), B (-3, -2) and C (1, -8) are the vertices of a triangle ABC. Find the equations of the median AD and line parallel to AC passing through the point B.

A(5, 4), B(–3, –2) and C(1, –8) are the vertices of a triangle ABC. Find the equation of median AD

संक्षेप में उत्तर
योग

उत्तर १

AD is the median
∴ CD BD ... (∵ D is the midpoint of BC)
Coordinates of D can be found by using section formula.
Let (x,y) be coordinates of the centre of the circle.

`(x,y)=((1-3)/(1+1),(-8-2)/(1+1))=(-1,-5)`

Coordinates of point D are (-1,-5)

Let m be the slope of AD.

Coordinates of A(5, 4) and D(–1, –5)

`m=(y_2-y_1)/(x_2-x_1)=(4-(-5))/(5-(-1))=9/6=3/2`

Equation of line is y = mx+c, where c is the y int ercept.

`4=(3 xx 5)/2+c ...(" Substituting the coordinates of A ")`

c=-7/2

Equation of line of AD is

`y="3x"/2-7/2`

2y =3x - 7 is equation of the median AD.

The coordinates of A (5,4) and C (1, -8)

Slope of AC = `(y_2-y_1)/(x_2-x_1)=-12/-4=3`

Substituting the coordinates of A(5,4) in the equation y = mx + c 

4 = (3x5)+c

c=-11

Line parallel to AC and pas sing through B(-3, -2) has slope 3

Substituting the coordinates of B 3, 2 in the equation y=mx+c

-2=(3x -3)+c

c=7

Equation of line parallel to AC and passing through B(-3,-2) is y=3x+7

 
shaalaa.com

उत्तर २

Let A(5,4) ≡ `(x_1,y_1)`; B(-3, -2) ≡ `(x_2,y_2)` and C(1,-8) ≡ `(x_3,y_3)`

D(x, y) is the midpoint of BC.

∴ the coordinates of `D = ((x_2 + x_3)/2, (y_2+y+_3)/2)`

`= ((-3+1)/2, (-2-8)/2) = (-2/2, -10/2) = (-1,-5)`

Let D(-1,-5) ≡ `(x_4,y_4)`

The equation of median AD is

`(x - x_1)/(x_1-x_4) = (y - y_1)/(y_1 - y_4)`

`:. (x-5)/(5-(-1)) = (y-4)/(4-(-5))`

`:. (x-5)/(5+1) = (y-4)/(4+5)`

`:. (x - 5)/6 = (y-4)/9`

`:. (x-5)/2 = (y -4)/3`

Multiplying both the sides by 6,

3(x - 5) = 2(y - 4)     ∴ 3x - 15 = 2y - 8

∴ 3x - 2y - 15 + 8 = 0  ∴ 3x - 2y - 7 = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Set A

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

In ΔABC, A(3, 5), B(7, 8) and C(1, –10). Find the equation of the median through A.


Given 3x + 2y + 4 = 0
(i) express the equation in the form y = mx + c
(ii) Find the slope and y-intercept of the line 3x + 2y + 4 = 0


Find the slope and y-intercept of the line:

3x – 4y = 5


The equation of a line is x – y = 4. Find its slope and y-intercept. Also, find its inclination.


Is the line 3x + 2y = 5 parallel to the line x + 2y = 1?


B(−5, 6) and D(1, 4) are the vertices of rhombus ABCD. Find the equations of diagonals BD and AC.


A = (7, −2) and C = (−1, −6) are the vertices of square ABCD. Find the equations of diagonals AC and BD.


A (5, 4), B (–3,–2) and C (1,–8) are the vertices of a triangle ABC. Find the equation of median AD and line parallel to AB passing through point C.


Verify that points P(–2, 2), Q(2, 2) and R(2, 7) are vertices of a right angled triangle.


Show that points P(2, –2), Q(7, 3), R(11, –1) and S (6, –6) are vertices of a parallelogram.


In Δ DEF, line PQ || side EF, If DP = 2.4,
PE = 7.2, DQ = 1 then find QF.


In the figure, line PQ || line RS. Using the information given
in the figure find the value of x.


 Find:

 

  1. equation of AB
  2. equation of CD

A straight line passes through the points P(–1, 4) and Q(5, –2). It intersects x-axis at point A and y-axis at point B. M is the mid-point of the line segment AB. Find: 

  1. the equation of the line. 
  2. the co-ordinates of point A and B.
  3. the co-ordinates of point M.

Find the equation of line through the intersection of lines 2x – y = 1 and 3x + 2y = –9 and making an angle of 30° with positive direction of x-axis.


Find the equation of the line through the points A(–1, 3) and B(0, 2). Hence, show that the point A, B and C(1, 1) are collinear.


In the figure, given, ABC is a triangle and BC is parallel to the y-axis. AB and AC intersect the y-axis at P and Q respectively. 

  1. Write the co-ordinates of A. 
  2. Find the length of AB and AC.
  3. Find the radio in which Q divides AC. 
  4. Find the equation of the line AC.

If (4,-3) is a point on line 5x +8y = c, find the value of c.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×