हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Circular Loop of Radius 20 Cm Carries a Current of 10 A. an Electron Crosses the Plane of the Loop with a Speed of 2.0 × 106 M S−1. - Physics

Advertisements
Advertisements

प्रश्न

A circular loop of radius 20 cm carries a current of 10 A. An electron crosses the plane of the loop with a speed of 2.0 × 106 m s−1. The direction of motion makes an angle of 30° with the axis of the circle and passes through its centre. Find the magnitude of the magnetic force on the electron at the instant it crosses the plane.

टिप्पणी लिखिए

उत्तर

Given:
Magnitude of current in the loop, I = 10 A
Radius of the loop, r = 20 cm = 20 × 10−2 m
Thus, the magnetic field intensity at the centre is given by \[B = \frac{\mu_0 I}{2r}\]

Now,
Velocity of the electron, v = 2 × 106 m/s
Angle between the velocity and the magnetic field intensity, θ = 30°
Thus, the magnetic force on the electron is given by

\[F   =   evB\sin  \theta\] 

\[ = 1 . 6   \times  {10}^{- 19}  \times 2 \times  {10}^6  \times \frac{\mu_0 i}{2R}\sin  30^\circ \] 

\[ =   1 . 6 \times  {10}^{- 19}  \times 2 \times  {10}^6  \times \frac{4\pi \times {10}^{- 7} \times 10}{2 \times 20 \times {10}^{- 2}} \times \frac{1}{2}\] 

\[ = 16\pi \times  {10}^{- 19} \] N

shaalaa.com
Magnetic Field on the Axis of a Circular Current Loop
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Magnetic Field due to a Current - Exercises [पृष्ठ २५२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 13 Magnetic Field due to a Current
Exercises | Q 38 | पृष्ठ २५२

संबंधित प्रश्न

Use Biot-Savart law to derive the expression for the magnetic field on the axis of a current carrying circular loop of radius R.

Draw the magnetic field lines due to a circular wire carrying current I.


Two identical circular coils, P and Q each of radius R, carrying currents 1 A and √3A respectively, are placed concentrically and perpendicular to each other lying in the XY and YZ planes. Find the magnitude and direction of the net magnetic field at the centre of the coils.


At a place, the horizontal component of earth's magnetic field is B and angle of dip is 60°. What is the value of horizontal component of the earth's magnetic field at equator?


Derive the expression for the torque on a rectangular current carrying loop suspended in a uniform magnetic field.


A circular loop is kept in that vertical plane which contains the north-south direction. It carries a current that is towards north at the topmost point. Let A be a point on the axis of the circle to the east of it and B a point on this axis to the west of it. The magnetic field due to the loop 


Figure shows a long wire bent at the middle to form a right angle. Show that the magnitudes of the magnetic fields at the point P, Q, R and S are equal and find this magnitude. 


Two circular coils of radii 5.0 cm and 10 cm carry equal currents of 2.0 A. The coils have 50 and 100 turns respectively and are placed in such a way that their planes as well as the centres coincide. Find the magnitude of the magnetic field B at the common centre of the coils if the currents in the coils are (a) in the same sense (b) in the opposite sense. 


A circular loop of radius r carrying a current i is held at the centre of another circular loop of radius R(>>r) carrying a current I. The plane of the smaller loop makes an angle of 30° with that of the larger loop. If the smaller loop is held fixed in this position by applying a single force at a point on its periphery, what would be the minimum magnitude of this force? 


Find the magnetic field B due to a semicircular wire of radius 10.0 cm carrying a current of 5.0 A at its centre of curvature.


A piece of wire carrying a current of 6.00 A is bent in the form of a circular are of radius 10.0 cm, and it subtends an angle of 120° at the centre. Find the magnetic field B due to this piece of wire at the centre.


A circular loop of radius r carries a current i. How should a long, straight wire carrying a current 4i be placed in the plane of the circle so that the magnetic field at the centre becomes zero? 


A circular coil of 200 turns has a radius of 10 cm and carries a current of 2.0 A. (a) Find the magnitude of the magnetic field \[\vec{B}\] at the centre of the coil. (b) At what distance from the centre along the axis of the coil will the field B drop to half its value at the centre?

\[(\sqrt[3]{4} = 1 \cdot 5874 . . . )\]

A charged particle moving in a uniform magnetic field and losses 4% of its kinetic energy. The radius of curvature of its path changes by ______.


Magnetic field at the centre of a circular coil of radius r, through which a current I flows is ______.

Consider a circular current-carrying loop of radius R in the x-y plane with centre at origin. Consider the line intergral

`ℑ(L ) = |int_(-L)^L B.dl|` taken along z-axis.

  1. Show that ℑ(L) monotonically increases with L.
  2. Use an appropriate Amperian loop to show that ℑ(∞) = µ0I, where I is the current in the wire.
  3. Verify directly the above result.
  4. Suppose we replace the circular coil by a square coil of sides R carrying the same current I. What can you say about ℑ(L) and ℑ(∞)?

Two horizontal thin long parallel wires, separated by a distance r carry current I each in the opposite directions. The net magnetic field at a point midway between them will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×