Advertisements
Advertisements
प्रश्न
A right triangle whose sides are 15 cm and 20 cm (other than hypotenuse), is made to revolve about its hypotenuse. Find the volume and surface area of the double cone so formed. (Choose value of π as found appropriate)
उत्तर
We have,
In ΔABC, ∠B = 90° , AB = l1 =15 cm and BC = l2 = 20 cm
Let OD = OB = r , AO = h1 and CO = h2
Using Pythagoras therom,
`"AC" = sqrt("AB"^2 + "BC"^2)`
`=sqrt(15^2 + 20^2)`
`= sqrt(225 + 400)`
`= sqrt(625)`
⇒ h = 25 cm
As, ar(ΔABC)` = 1/2xxACxxBO=1/2xxABxxBC `
⇒ AC × BO = AB × BC
⇒ 25r = 15 × 20
`rArr r = (15xx20)/25`
⇒ r = 12 cm
Now,
Volume of the double cone so formed = Volume of cone 1 +Volume of cone 2
`= 1/3 pir^2h_1 + 1/3pir^2h_2`
`= 1/3 pir^2 ("h"_1 + "h"_2)`
`= 1/3pi"r"^2"h"`
`= 1/3xx3.14xx12xx12xx25`
= 3768 cm3
Also,
surace area of the solid so formed = CAS of cone 1 + CSA of cone 2
= πrl1 + πrl2
= πr ( l1 + l2 )
`= 22/7xx12xx(15+20)`
`=22/7xx12xx35`
= 1320 cm2
APPEARS IN
संबंधित प्रश्न
From a solid cylinder of height 2.8 cm and diameter 4.2 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid [take π=22/7]
From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm2
[use `pi = 22/7`]
A toy is in the shape of a right circular cylinder with a hemisphere on one end and a cone on the other. The radius and height of the cylindrical part are 5 cm and 13 cm respectively.The radii of the hemispherical and conical parts are the same as that of the cylindrical part.Find the surface area of the toy if the total height of the toy is 30 cm.
A milk container is made of metal sheet in the shape of frustum of a cone whose volume is 10459 `3/7` cm3. The radii of its lower and upper circular ends are 8cm and 20cm. find the cost of metal sheet used in making container at rate of Rs 1.4 per cm2?
Two cubes each of volume 27 cm3 are joined end to end to form a solid. Find the surface area of the resulting cuboid.
Three solid spheres of radii 3, 4 and 5 cm respectively are melted and converted into a single solid sphere. Find the radius of this sphere.
A solid sphere of radius 'r' is melted and recast into a hollow cylinder of uniform thickness. If the external radius of the base of the cylinder is 4 cm, its height 24 cm and thickness 2 cm, find the value of 'r'.
Five identical cubes, each of edge 5 cm, are placed adjacent to each other. Find the volume of the resulting cuboid.
The total surface area of a solid hemisphere of radius r is ________.
If two solid hemispheres of the same base radius r are joined together along their bases, then curved surface area of this new solid is ______.