Advertisements
Advertisements
प्रश्न
ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see the given figure). Show that
- ΔABE ≅ ΔACF
- AB = AC, i.e., ABC is an isosceles triangle.
उत्तर
i. In △ABE and △ACF, we have
∠AEB = ∠AFC ...[Each = 90° as BE ⊥ AC and CF ⊥ AB]
∠A = ∠A ...[Common]
BE = CF ...[Given]
∴ △ABE ≌ △ACF ...[By AAS congruence rule]
ii. Since, △ABE ≌ △ACF
∴ AB = AC ...[By Corresponding parts of congruent triangles]
⇒ ABC is an isosceles triangle.
APPEARS IN
संबंधित प्रश्न
Two lines AB and CD intersect at O such that BC is equal and parallel to AD. Prove that the lines AB and CD bisect at O.
In a ΔPQR, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP
respectively. Prove that LN = MN.
Which of the following statements are true (T) and which are false (F):
If the bisector of the vertical angle of a triangle bisects the base, then the triangle may be isosceles.
Which of the following statements are true (T) and which are false (F):
The two altitudes corresponding to two equal sides of a triangle need not be equal.
Fill in the blank to make the following statement true.
The sum of any two sides of a triangle is .... than the third side.
Write the sum of the angles of an obtuse triangle.
In a triangle ABC, if AB = AC and AB is produced to D such that BD = BC, find ∠ACD: ∠ADC.
In the given figure, if EC || AB, ∠ECD = 70° and ∠BDO = 20°, then ∠OBD is
In the given figure, x + y =
Show that in a quadrilateral ABCD, AB + BC + CD + DA > AC + BD