हिंदी

Bisectors of the angles B and C of an isosceles triangle with AB = AC intersect each other at O. BO is produced to a point M. Prove that ∠MOC = ∠ABC. - Mathematics

Advertisements
Advertisements

प्रश्न

Bisectors of the angles B and C of an isosceles triangle with AB = AC intersect each other at O. BO is produced to a point M. Prove that ∠MOC = ∠ABC.

योग

उत्तर

Given in the question, bisectors of the angles B and C of an isosceles triangle ABC with AB = AC intersect each other at O. Now BO is produced to a point M.


In triangle ABC,

AB = AC  

∠ABC = ∠ACB   ...[Angle opposite to equal sides of a triangle are equal]

`1/2 ∠ABC = 1/2 ∠ACB`

That is ∠1 = ∠2  ...[Since, BO and CO are bisectors of ∠B and ∠C]

In triangle OBC,

Exterior ∠MOC = ∠1 + ∠2  ...[Exterior angle of a triangle is equal to the sum of interior opposite angles]

Exterior ∠MOC = 2∠1   ...[∠1 = ∠2]

Hence, ∠MOC = ∠ABC.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.3 [पृष्ठ ६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 9
अध्याय 7 Triangles
Exercise 7.3 | Q 9. | पृष्ठ ६७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×