Advertisements
Advertisements
प्रश्न
एक मेहराब परवलय के आकार का है और इसका अक्ष ऊर्ध्वाधर है। मेहराब 10 मीटर ऊँचा है और आधार में 5 मीटर चौड़ा है। यह, परवलय के दो मीटर की दूरी पर शीर्ष से कितना चौड़ा होगा?
उत्तर
इसका आकार परवलय की आकृति का है।
माना OX, OY इसके निर्देशांक अक्ष है, और समीकरण y2 = 4ax है।
मेहराब की ऊँचाई, OL = 10 मीटर
चौड़ाई EF = 5 मीटर
LF = `1/2` EF = `1/2 xx 5 = 5/2`
बिंदु F के निर्देशांक `(10, 5/2)`
चूँकि बिंदु `(10, 5/2)` परवलय y2 = 4ax पर स्थित है
∴ `(5/2)^2 = 4"a" xx 10` या `40"a" = 25/4`
∴ 4a = `25/4 xx 1/10 = 5/8`
∴ परवलय का समीकरण y2 = `5/8 "x"`
शीर्ष O से 2 मीटर नीचे, मान लिया कि मेहराब की चौड़ाई 2b है।
∴ PM = `1/2 "PQ" = 1/2 xx 2"b" = "b"`
P बिंदु के निर्देशांक (2, b) है जो परवलय `"y"^2 = 5/8 "x"` पर स्थित है।
∴ `"b"^2 = 5/8 xx 2 = 5/4`
∴ b = `sqrt5/2`
इस स्थान पर मेहराब की चौड़ाई,
= `2"b"`
= `2 xx sqrt5/2`
= `sqrt5` मीटर
= 2.24 मीटर (लगभग)
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:
नाभि (6, 0), नियता x = –6
निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:
नाभि (0, –3), नियता y = 3
निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:
शीर्ष (0, 0), नाभि (3, 0)
निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:
शीर्ष (0, 0), नाभि (−2, 0)
निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:
शीर्ष (0, 0), (2, 3) से जाता है और अक्ष, x-अक्ष के अनुदिश है।
निम्नलिखित प्रश्न में परवलय का समीकरण ज्ञात कीजिए जो दिए प्रतिबंध को संतुष्ट करता है:
शीर्ष (0, 0), (5, 2) से जाता है और y-अक्ष के सापेक्ष सममित है।
निम्नलिखित प्रश्न में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:
दीर्घ अक्ष की लंबाई = 16, नाभियाँ (0, ±6)
निम्नलिखित प्रश्न में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:
नाभियाँ (±3, 0), a = 4
निम्नलिखित प्रश्न में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:
b = 3, c = 4, केंद्र मूल बिंदु पर, नाभियाँ x-अक्ष पर है।
निम्नलिखित प्रश्न में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:
केंद्र (0, 0) पर, दीर्घ अक्ष y-अक्ष पर और बिंदुओं (3, 2) और (1, 6) से जाता है।
निम्नलिखित प्रश्न में, दिए प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए:
दीर्घ अक्ष,x-अक्ष पर और बिंदुओं (4, 3), (6, 2) से जाता है।
यदि एक परवलयाकार परावर्तक का व्यास 20 सेमी और गहराई 5 सेमी है। नाभि ज्ञात कीजिए।
एक सर्वसम भारी झूलते पुल की केबिल (cable) परवलय के रूप में लटकी हुई है। सड़क पथ जो क्षैतिज है 100 मीटर लंबा है तथा केबिल से जुड़े ऊर्ध्वाधर तारों पर टिका हुआ है, जिसमें सबसे लंबा तार 30 मीटर और सबसे छोटा तार 6 मीटर है। मध्य से 18 मीटर दूर सड़क पथ से जुड़े समर्थक (supporting) तार की लंबाई ज्ञात कीजिए।