Advertisements
Advertisements
प्रश्न
Figure shows an aluminium wire of length 60 cm joined to a steel wire of length 80 cm and stretched between two fixed supports. The tension produced is 40 N. The cross-sectional area of the steel wire is 1⋅0 mm2 and that of the aluminium wire is 3⋅0 mm2. What could be the minimum frequency of a tuning fork which can produce standing waves in the system with the joint as a node? The density of aluminium is 2⋅6 g cm−3 and that of steel is 7⋅8 g cm−3.
उत्तर
Given:
Length of the aluminium wire (La)= 60 cm = 0.60 m
Length of the steel wire (Ls)= 80 cm = 0.80 m
Tension produced (T) = 40 N
Area of cross-section of the aluminium wire (Aa) = 1.0 mm2
Area of cross-section of the steel wire (As) = 3.0 mm2
Density of aluminium (ρa) = 2⋅6 g cm−3
Density of steel (ρs) = 7⋅8 g cm−3
\[\text{ Mass per unit length of the steel, m_s } = \rho_s \times A_s \]
\[ = 7 . 8 \times {10}^{- 2} gm/cm\]
\[ = 7 . 8 \times {10}^{- 3} kg/m\]
\[\text{ Mass per unit length of the aluminium, m_A }= \rho_A A_A \]
\[ = 2 . 6 \times {10}^{- 2} \times 3 gm/cm\]
\[ = 7 . 8 \times {10}^{- 2} gm/cm\]
\[ = 7 . 8 \times {10}^{- 3} kg/m\]
A node is always placed at the joint. Since aluminium and steel rod has same mass per unit length, the velocity of wave (v) in both of them is same.
Let v be the velocity of wave.
\[\Rightarrow v = \left( \frac{T}{m} \right)\]
\[ = \sqrt{\left\{ \frac{40}{7 . 8 \times {10}^{- 3}} \right\}}^- \]
\[ = \sqrt{\left( \frac{4 \times {10}^4}{7 . 8} \right)}\]
\[ \Rightarrow v = 71 . 6 m/s\]
For minimum frequency, there would be maximum wavelength.
For maximum wavelength, minimum number of loops are to be produced.
∴ Maximum distance of a loop = 20 cm
\[\Rightarrow \text{ Wavelength, } \lambda = 2 \times 20 = 40 cm\]
\[\text{ Or } \lambda = 0 . 4 m\]
\[ \therefore Frequency, f = \frac{v}{\lambda} = \frac{71 . 6}{0 . 4} = 180 Hz\]
APPEARS IN
संबंधित प्रश्न
A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20 °C = 343 m s–1.
Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air increases with humidity.
You have learnt that a travelling wave in one dimension is represented by a function y= f (x, t)where x and t must appear in the combination x – v t or x + v t, i.e. y = f (x ± v t). Is the converse true? Examine if the following functions for y can possibly represent a travelling wave:
(a) `(x – vt )^2`
(b) `log [(x + vt)/x_0]`
(c) `1/(x + vt)`
A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of 45 Hz. The mass of the wire is 3.5 × 10–2 kg and its linear mass density is 4.0 × 10–2 kg m–1. What is (a) the speed of a transverse wave on the string, and (b) the tension in the string?
A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km h–1. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m s–1.
A sine wave is travelling in a medium. The minimum distance between the two particles, always having same speed, is
Two waves of equal amplitude A, and equal frequency travel in the same direction in a medium. The amplitude of the resultant wave is
Two sine waves travel in the same direction in a medium. The amplitude of each wave is A and the phase difference between the two waves is 120°. The resultant amplitude will be
A sonometer wire of length l vibrates in fundamental mode when excited by a tuning fork of frequency 416. Hz. If the length is doubled keeping other things same, the string will ______.
A sonometer wire supports a 4 kg load and vibrates in fundamental mode with a tuning fork of frequency 416. Hz. The length of the wire between the bridges is now doubled. In order to maintain fundamental mode, the load should be changed to
A wave propagates on a string in the positive x-direction at a velocity \[\nu\] \[t = t_0\] is given by \[g\left( x, t_0 \right) = A \sin \left( x/a \right)\]. Write the wave equation for a general time t.
A string of length 40 cm and weighing 10 g is attached to a spring at one end and to a fixed wall at the other end. The spring has a spring constant of 160 N m−1 and is stretched by 1⋅0 cm. If a wave pulse is produced on the string near the wall, how much time will it take to reach the spring?
A 200 Hz wave with amplitude 1 mm travels on a long string of linear mass density 6 g m−1 kept under a tension of 60 N. (a) Find the average power transmitted across a given point on the string. (b) Find the total energy associated with the wave in a 2⋅0 m long portion of the string.
The string of a guitar is 80 cm long and has a fundamental frequency of 112 Hz. If a guitarist wishes to produce a frequency of 160 Hz, where should the person press the string?
A man standing unsymmetrical position between two mountains and fires a gun. He hears the first echo after 1.5 s and the second echo after 2.5 s. If the speed of sound in air is 340 m/s, then the distance between the mountains will be ______
For the travelling harmonic wave
y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)
Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of `λ/2`.
A transverse harmonic wave on a string is described by y(x, t) = 3.0 sin (36t + 0.018x + π/4) where x and y are in cm and t is in s. The positive direction of x is from left to right.
- The wave is travelling from right to left.
- The speed of the wave is 20 m/s.
- Frequency of the wave is 5.7 Hz.
- The least distance between two successive crests in the wave is 2.5 cm.
An engine is approaching a cliff at a constant speed. When it is at a distance of 0.9 km from cliff it sounds a whistle. The echo of the sound is heard by the driver after 5 seconds. Velocity of sound in air is equal to 330 ms-1. The speed of the engine is ______ km/h.