English
Karnataka Board PUCPUC Science Class 11

Figure (15-E10) shows an aluminium wire of length 60 cm joined to a steel wire of length 80 cm and stretched between two fixed supports. The tension produced is 40 N. - Physics

Advertisements
Advertisements

Question

Figure shows an aluminium wire of length 60 cm joined to a steel wire of length 80 cm and stretched between two fixed supports. The tension produced is 40 N. The cross-sectional area of the steel wire is 1⋅0 mm2 and that of the aluminium wire is 3⋅0 mm2. What could be the minimum frequency of a tuning fork which can produce standing waves in the system with the joint as a node? The density of aluminium is 2⋅6 g cm−3 and that of steel is 7⋅8 g cm−3.

Sum

Solution

Given:
Length of the aluminium wire (La)= 60 cm = 0.60 m
Length of the steel wire (Ls)= 80 cm = 0.80 m
Tension produced (T) = 40 N
Area of cross-section of the aluminium wire (Aa)  = 1.0 mm2
Area of cross-section of the steel wire (As) = 3.0 mm2
Density of aluminium (ρa) = 2⋅6 g cm−3
Density of steel  (ρs) = 7⋅8 g cm−3  

\[\text{ Mass  per  unit  length  of  the  steel,    m_s }    =  \rho_s  \times  A_s \] 

\[   = 7 . 8 \times  {10}^{- 2}   gm/cm\] 

\[  = 7 . 8 \times  {10}^{- 3}   kg/m\] 

\[\text{ Mass  per  unit  length  of  the  aluminium,    m_A  }=  \rho_A  A_A \] 

\[   = 2 . 6 \times  {10}^{- 2}  \times 3  gm/cm\] 

\[ = 7 . 8 \times  {10}^{- 2}   gm/cm\] 

\[ = 7 . 8 \times  {10}^{- 3}   kg/m\]

A node is always placed at the joint. Since aluminium and steel rod has same mass per unit length, the velocity of wave (v) in both of them is same.
Let v be the velocity of wave.

\[\Rightarrow v = \left( \frac{T}{m} \right)\] 

\[ =  \sqrt{\left\{ \frac{40}{7 . 8 \times {10}^{- 3}} \right\}}^- \] 

\[  = \sqrt{\left( \frac{4 \times {10}^4}{7 . 8} \right)}\] 

\[ \Rightarrow v = 71 . 6  m/s\]
For minimum frequency, there would be maximum wavelength.
For maximum wavelength, minimum number of loops are to be produced.
∴ Maximum distance of a loop = 20 cm

\[\Rightarrow   \text{ Wavelength, }   \lambda = 2 \times 20 = 40  cm\] 

\[\text{ Or }  \lambda = 0 . 4  m\] 

\[ \therefore Frequency,   f = \frac{v}{\lambda} = \frac{71 . 6}{0 . 4} = 180  Hz\]

shaalaa.com
The Speed of a Travelling Wave
  Is there an error in this question or solution?
Chapter 15: Wave Motion and Waves on a String - Exercise [Page 326]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 15 Wave Motion and Waves on a String
Exercise | Q 49 | Page 326

RELATED QUESTIONS

A steel wire has a length of 12.0 m and a mass of 2.10 kg. What should be the tension in the wire so that speed of a transverse wave on the wire equals the speed of sound in dry air at 20 °C = 343 m s–1.


A bat emits an ultrasonic sound of frequency 1000 kHz in the air. If the sound meets a water surface, what is the wavelength of the transmitted sound? The speed of sound in air is 340 m s–1 and in water 1486 m s–1.


A metre-long tube open at one end, with a movable piston at the other end, shows resonance with a fixed frequency source (a tuning fork of frequency 340 Hz) when the tube length is 25.5 cm or 79.3 cm. Estimate the speed of sound in air at the temperature of the experiment. The edge effects may be neglected.


The radio and TV programmes, telecast at the studio, reach our antenna by wave motion. Is it a mechanical wave or nonmechanical?


Show that for a wave travelling on a string 
\[\frac{y_{max}}{\nu_{max}} = \frac{\nu_{max}}{\alpha_{max}},\]

where the symbols have usual meanings. Can we use componendo and dividendo taught in algebra to write
\[\frac{y_{max} + \nu_{max}}{\nu_{max} - \nu_{max}} = \frac{\nu_{max} + \alpha_{max}}{\nu_{max} - \alpha_{max}}?\]


Two wires A and B, having identical geometrical construction, are stretched from their natural length by small but equal amount. The Young modules of the wires are YA and YB whereas the densities are \[\rho_A \text{ and }   \rho_B\]. It is given that YA > YB and \[\rho_A  >  \rho_B\]. A transverse signal started at one end takes a time t1 to reach the other end for A and t2 for B.


A sonometer wire supports a 4 kg load and vibrates in fundamental mode with a tuning fork of frequency 416. Hz. The length of the wire between the bridges is now doubled. In order to maintain fundamental mode, the load should be changed to


The displacement of the particle at x = 0 of a stretched string carrying a wave in the positive x-direction is given f(t) = A sin (t/T). The wave speed is  v. Write the wave equation.


The equation of a wave travelling on a string is \[y = \left( 0 \cdot 10  \text{ mm } \right)  \sin\left[ \left( 31 \cdot 4  m^{- 1} \right)x + \left( 314  s^{- 1} \right)t \right]\]
(a) In which direction does the wave travel? (b) Find the wave speed, the wavelength and the frequency of the wave. (c) What is the maximum displacement and the maximum speed of a portion of the string?


A wave travelling on a string at a speed of 10 m s−1 causes each particle of the string to oscillate with a time period of 20 ms. (a) What is the wavelength of the wave? (b) If the displacement of a particle of 1⋅5 mm at a certain instant, what will be the displacement of a particle 10 cm away from it at the same instant?


A travelling wave is produced on a long horizontal string by vibrating an end up and down sinusoidally. The amplitude of vibration is 1⋅0 and the displacement becomes zero 200 times per second. The linear mass density of the string is 0⋅10 kg m−1 and it is kept under a tension of 90 N. (a) Find the speed and the wavelength of the wave. (b) Assume that the wave moves in the positive x-direction and at t = 0, the end x = 0 is at its positive extreme position. Write the wave equation. (c) Find the velocity and acceleration of the particle at x = 50 cm at time t = 10 ms.


The equation for the vibration of a string, fixed at both ends vibrating in its third harmonic, is given by
\[y = \left( 0 \cdot 4  cm \right)  \sin\left[ \left( 0 \cdot 314  {cm}^{- 1} \right)  x \right]  \cos  \left[ \left( 600\pi  s^{- 1} \right)  t \right]\]
(a) What is the frequency of vibration? (b) What are the positions of the nodes? (c) What is the length of the string? (d) What is the wavelength and the speed of two travelling waves that can interfere to give this vibration?


A string 1 m long is fixed at one end. The other end is moved up and down with a frequency of 20 Hz. Due to this, a stationary wave with four complete loops gets produced on the string. Find the speed of the progressive wave which produces the stationary wave. 


Use the formula `v = sqrt((gamma P)/rho)` to explain why the speed of sound in air is independent of pressure.


For the travelling harmonic wave

y (x, t) = 2.0 cos 2π (10t – 0.0080x + 0.35)

Where x and y are in cm and t in s. Calculate the phase difference between oscillatory motion of two points separated by a distance of 0.5 m.


A string of mass 2.5 kg is under a tension of 200 N. The length of the stretched string is 20.0 m. If the transverse jerk is struck at one end of the string, the disturbance will reach the other end in ______.


At what temperatures (in °C) will the speed of sound in air be 3 times its value at O°C?


If c is r.m.s. speed of molecules in a gas and v is the speed of sound waves in the gas, show that c/v is constant and independent of temperature for all diatomic gases.


A wave of frequency υ = 1000 Hz, propagates at a velocity v = 700 m/sec along x-axis. Phase difference at a given point x during a time interval M = 0.5 × 10-3 sec is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×