हिंदी

Find the area of the quadrilaterals, the coordinates of whose vertices are (1, 2), (6, 2), (5, 3) and (3, 4) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the quadrilaterals, the coordinates of whose vertices are

(1, 2), (6, 2), (5, 3) and (3, 4)

उत्तर

Let the vertices of the quadrilateral be A (1, 2), B (6, 2), C (5, 3), and D (3, 4). Join AC to form two triangles ΔABC and ΔACD.

Area of a triangle `=1/2 {x_1(y_2-y_3)+x_2(y_3-y_1)+(y_1-y_2)}` 

Area of ΔABC `=1/2 {1(2-3)+6(3-2+5(2-2)}`

`=1/2(-1+6)=5/2` square units 

Area of ΔACD `=1/2{1(3-4)+5(4-2)+3(2-3)}`

`=1/2 {-1+10-3}=3`  square   units  

Area of `square`ABCD = Area of ΔABC +Area of ΔACD 

`=(5/2+3)` square units = 11/2 square units  

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.5 [पृष्ठ ५३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.5 | Q 2.2 | पृष्ठ ५३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×