हिंदी

If Two Adjacent Vertices of a Parallelogram Are (3, 2) and (−1, 0) and the Diagonals Intersect at (2, −5), Then Find the Coordinates of the Other Two Vertices. - Mathematics

Advertisements
Advertisements

प्रश्न

If two adjacent vertices of a parallelogram are (3, 2) and (−1, 0) and the diagonals intersect at (2, −5), then find the coordinates of the other two vertices.

उत्तर

Let ABCD be the parallelogram with two adjacent vertices A(3, 2) and B(−1, 0). Suppose O(2, −5) be the point of intersection of the diagonals AC and BD.

Let C(x1y1) and D(x2y2) be the coordinates of the other vertices of the parallelogram.

We know that the diagonals of the parallelogram bisect each other. Therefore, O is the mid-point of AC and BD.
Using the mid-point formula, we have

\[\left( \frac{x_1 + 3}{2}, \frac{y_1 + 2}{2} \right) = \left( 2, - 5 \right)\]

\[ \Rightarrow \frac{x_1 + 3}{2} = 2\ and\ \frac{y_1 + 2}{2} = - 5\]

\[ \Rightarrow x_1 + 3 = 4\ and\ y_1 + 2 = - 10\]

\[ \Rightarrow x_1 = 4 - 3 = 1\ and\ y_1 = - 10 - 2 = - 12\]

So, the coordinates of C are (1, −12).

Also,

\[\left( \frac{x_2 + \left( - 1 \right)}{2}, \frac{y_2 + 0}{2} \right) = \left( 2, - 5 \right)\]

\[ \Rightarrow \frac{x_2 - 1}{2} = 2\ and\ \frac{y_2}{2} = - 5\]

\[ \Rightarrow x_2 - 1 = 4\ and\ y_2 = - 10\]

\[ \Rightarrow x_2 = 4 + 1 = 5\ and\ y_2 = - 10\]

So, the coordinates of D are (5, −10).
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Foreign Set 3

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×