हिंदी

In a δAbc, ∠Abc = ∠Acb and the Bisectors of ∠Abc and ∠Acb Intersect at O Such that ∠Boc = 120°. Show that ∠A = ∠B = ∠C = 60°. - Mathematics

Advertisements
Advertisements

प्रश्न

In a ΔABC, ∠ABC = ∠ACB and the bisectors of ∠ABC and ∠ACB intersect at O such that ∠BOC = 120°. Show that ∠A = ∠B = ∠C = 60°. 

उत्तर

Given,
In ΔABC 

∠ABC=∠ ACB 

Divide both sides by '2' 

`1/2∠ABC=1/2∠ACB` 

⇒ ∠OBC=∠ OCB              [∵ OB, OC bisects ∠B and ∠C] 

 

Now 

`∠BOC=90^@+1/2∠A` 

`120^@-90^@=1/2∠A` 

`30^@xx(2)=∠A` 

`∠A=60^@` 

Now in Δ ABC 

`∠A+∠ABC+∠ACB=180^@`      (Sum of all angles of a triangle) 

                                                            [∵∠ABC=∠ACB]

`60^@+2∠ABC=180^@` 

`2∠ABC=180^@-60^2` 

`∠ABC=120^@/2=90^@` 

`∠ABC=∠ ACB` 

`∴ ∠ACB=60^@` 

Hence proved. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Triangle and its Angles - Exercise 11.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 11 Triangle and its Angles
Exercise 11.1 | Q 11 | पृष्ठ १०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×