हिंदी

In ∆Abc, Ad is a Median. Prove that Ab2 + Ac2 = 2ad2 + 2dc2. - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆ABC, AD is a median. Prove that AB2 + AC2 = 2AD2 + 2DC2.

योग

उत्तर

We have the following figure.

Since triangle ABM and ACM are right triangles right angled at M

`AB^2=AM^2+BM^2`.....(1)

`AC^2=AM^2+CM^2`.....(2)

Adding (i) and (ii), we get

`AB^2+AC^2=2AM^2+BM^2+CM^2`

Since in triangle ADM we have

`AD^2=DM^2+AM^2`

So,

`AB^2+AC^2=2(AD^2-DM^2)+BM^2+CM^2`

`=2AD^2-DM^2+BM^2+CM^2`

`=2AD^2-DM^2+BM^2+CM^2+2BMxxCM-2BMxxCM`

`= 2AD^2-2DM^2+(BM+CM)-2BMxxCM`

BM + CM = BC

So,

`AB^2+AC^2=A2AD^2-2DM^2-2MBxxCM+BC^2`

`AB^2+AC^2=2AD^2-2DM62-2MBxxCM+4CD^2`

`=2AD^2+4CD^2-2DM^2-2(CD+DM)(CD-DM)`

`=2AD^2+4CD^2-2DM^2-2CD^2+2CDxxDM-2DMxxCD+2DM^2`

`= 2AD^2+2CD^2`

Hence proved  `AB^2+AC^2=2AD^2+2CD^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.8 [पृष्ठ १२७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 7 Triangles
Exercise 7.8 | Q 34 | पृष्ठ १२७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×