हिंदी

In ∆Abc, ∠Abc = 135°. Prove that Ac2 = Ab2 + Bc2 + 4 Ar (∆Abc) - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆ABC, ∠ABC = 135°. Prove that AC2 = AB2 + BC2 + 4 ar (∆ABC)

योग

उत्तर

We have the following figure.

Let Draw an altitude AD on Extended BC

In ∆ADC, ∠D = 90°

Therefore, by Pythagoras theorem, we have

`AC^2=AD^2+DC^2`

`AC^2=AD^2+(DB+BC)^2`

`AC^2=AD^2+DB^2+BC^2+2.BC.BD`   ...(i)

In ΔADB, ∠D = 90°

⇒ `AD^2 + BD^2 = AB^2`

By substituting values of equation (i)

⇒`AD^2+DB^2+BC^2+2.BC.BD = AC^2`

⇒`AB^2 + BC^2 + 2BD.BC = AC^2`

As in ΔADB, ∠DAB = 45°

⇒ AD = DB (Opposite sides are equal)

⇒`AB^2+BC^2+2.BC.BD = AC^2`

⇒`AB^2+BC^2+2.BC.AD = AC^2`

⇒`AB^2+BC^2 + 4 xx 2/4 xx AD xx BC= AC^2`

∴ `1/2 xx AD xx BC = ar(ΔABC)`

⇒ `AC^2 = AB^2 + BC^2 + 4 ar (∆ABC)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.8 [पृष्ठ १२७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 7 Triangles
Exercise 7.8 | Q 35 | पृष्ठ १२७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×