हिंदी

In ∆Abc, If Bd ⊥ Ac and Bc2 = 2 Ac . Cd, Then Prove that Ab = Ac. - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆ABC, if BD ⊥ AC and BC2 = 2 AC . CD, then prove that AB = AC.

योग

उत्तर

Since Δ ADB  is right triangle right angled at D

`AB^2=AD^2+BD^2`

In right Δ BDC, we have

`CD^2+BD^2=BC^2`

Sine `2AC.DC=BC^2`

`⇒DC^2+BD^2=2AC.DC `

`2AC.DC=AC^2-AC^2+DC^2+BD^2`

`AC^2=AC^2+DC^2-2AC.DC+BD^2`

`AC^2=(AC-DC)^2+BD^2`

`AC^2=AD^2+BD^2`

Now substitute `AD^2+BD^2=AB^2`

`AC^2=AB^2`

`AC=AB`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.8 [पृष्ठ १२७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 7 Triangles
Exercise 7.8 | Q 30 | पृष्ठ १२७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×