हिंदी

In a Quadrilateral Abcd, Given that ∠A + ∠D = 90°. Prove that Ac2 + Bd2 = Ad2 + Bc2. - Mathematics

Advertisements
Advertisements

प्रश्न

In a quadrilateral ABCD, given that ∠A + ∠D = 90°. Prove that AC2 + BD2 = AD2 + BC2.

योग

उत्तर

Given: A quadrilateral ABCD where A + D = 90°.

To prove: AC2 + BD2 = AD2 + BC2

Construction: Extend AB and CD to intersect at O.

Proof:

In ΔAOD, A + O + D = 180°

⇒ ∠O = 90° [A + D = 90°]

Apply Pythagoras Theorem in ΔAOC and ΔBOD,

AC2 = AO2 + OC2

BD2 = OB2 + OD2

∴ AC2 + BD2 = (AO2 + OD2) + (OC2 + OB2)

⇒ AC2 + BD2 = AD2 + BC2

This proves the given relation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.8 [पृष्ठ १२७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 7 Triangles
Exercise 7.8 | Q 31 | पृष्ठ १२७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×