हिंदी

In ∆Abc, Given that Ab = Ac and Bd ⊥ Ac. Prove that Bc2 = 2 Ac. Cd - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆ABC, given that AB AC and BD ⊥ AC. Prove that BC2 = 2 ACCD

योग

उत्तर

Since Δ ADB is right triangle right angled at D

`AB^2=AD^2+BD^2`

Substitute `AB=AC`

`AC^2 =AD^2+BD^2`

`AC^2=(AC-DC)^2+BD^2`

`AC^2=AC^2+DC^2-2AC.DC+BD^2`

`2AC.DC=AC^2-AC^2+DC^2+BD^2`

`2AC.DC=DC^2+BD^2`

Now, in Δ BDC, we have

`CD^2+BD^2=BC^2`

Therefore , `2AC.DC = DC^2+BD^2`

`2AC.DC=BC^2`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.8 [पृष्ठ १२७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 7 Triangles
Exercise 7.8 | Q 32 | पृष्ठ १२७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×