हिंदी

In ∆Abc, P and Q Are Points on Sides Ab and Ac Respectively Such that Pq || Bc. If Ap = 4 Cm, Pb = 6 Cm and Pq = 3 Cm, Determine Bc. - Mathematics

Advertisements
Advertisements

प्रश्न

In ∆ABC, P and Q are points on sides AB and AC respectively such that PQ || BC. If AP = 4 cm, PB = 6 cm and PQ = 3 cm, determine BC.

योग

उत्तर

In triangle ABCP and Q are points on sides AB and AC respectively such that `PQ|| BC`.

In ΔAPQ and ΔABC,

\[\angle APQ = \angle B \] (Corresponding angles)
So,
\[∆ APQ~ ∆ ABC\] (AA Similarity)
\[\frac{AP}{AB} = \frac{PQ}{BC}\]

Substituting value AP = 3cm,AB=10cm and  PQ = 3cm, we get

`(AP)/(AB)=(3)/(BC)`

By cross multiplication we get

`4 xx BC = 3xx10`

`BC = (3xx10)/4`

`BC = 30/4`

`BC = 7.5 cm`

Hence, the value of BC is  7.5 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.8 [पृष्ठ १२४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 7 Triangles
Exercise 7.8 | Q 6 | पृष्ठ १२४

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×