Advertisements
Advertisements
рдкреНрд░рд╢реНрди
In below figure, If AB || CD, find the value of x.
рдЙрддреНрддрд░
Since diagonals of a trapezium divide each other proportionally.
`therefore"AO"/"OC"="BO"/"OD"`
`rArr4/(4x-2)=(x+1)/(2x+4)`
⇒ 4(2ЁЭСе + 4) = (ЁЭСе + 1)(4ЁЭСе − 2)
⇒ 8x + 16 = x(4x – 2) +1(4x – 2)
⇒ 8x + 16 = 4x2 + 2x – 2
⇒ 4x2 + 2ЁЭСе − 8ЁЭСе − 2 − 16 = 0
⇒ 4x2 − 6ЁЭСе − 18 = 0
⇒ 2[2ЁЭСе2 − 3ЁЭСе − 9] = 0
⇒ 2ЁЭСе2 − 3ЁЭСе − 9 = 0
⇒ 2ЁЭСе(ЁЭСе − 3) + 3(ЁЭСе − 3) = 0
⇒ (ЁЭСе − 3)(2ЁЭСе + 3) = 0
⇒ ЁЭСе − 3 = 0 or 2ЁЭСе + 3 = 0
⇒ ЁЭСе = 3 or ЁЭСе = -3/2
ЁЭСе = -3/2 is not possible, because
`"OB"=x+1=-3/2+1=-1/2`
Length cannot be negative
`therefore"AO"/"OC"="BO"/"OD"`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
D and E are points on the sides AB and AC respectively of a ΔABC. In each of the following cases, determine whether DEтХСBC or not.
AD = 5.7cm, DB = 9.5cm, AE = 4.8cm and EC = 8cm.
In тИЖABC, points P and Q are on CA and CB, respectively such that CA = 16 cm, CP = 10 cm, CB = 30 cm and CQ = 25 cm. Is PQ || AB?
In тИЖPQR, M and N are points on sides PQ and PR respectively such that PM = 15 cm and NR = 8 cm. If PQ = 25 cm and PR = 20 cm state whether MN || QR.
In тИЖABC, P and Q are points on sides AB and AC respectively such that PQ || BC. If AP = 3 cm, PB = 5 cm and AC = 8 cm, find AQ.
State Pythagoras theorem and its converse.
In the given figure, DE || BC in тИЖABC such that BC = 8 cm, AB = 6 cm and DA = 1.5 cm. Find DE.
If ABC and DEF are similar triangles such that ∠A = 47° and ∠E = 83°, then ∠C =
тИЖABC ∼ тИЖDEF. If BC = 3 cm, EF = 4 cm and ar(тИЖABC) = 54 cm2, then ar(тИЖDEF) =
In the given figure, the value of x for which DE || AB is
In a right triangle ABC right-angled at B, if P and Q are points on the sides AB and AC respectively, then