हिंदी

In δAbc, D is the Midpoint of Bc and Ae⊥Bc. If Ac>Ab, Show that `Ab^2= Ad^2+1/4 Bc^2 −Bc.De ` - Mathematics

Advertisements
Advertisements

प्रश्न

In ΔABC, D is the midpoint of BC and AE⊥BC. If AC>AB, show that `AB^2= AD^2+1/4 BC^2 −BC.DE ` 

उत्तर

In right-angled triangle AED, applying Pythagoras theorem, we have: 

`AB^2=AE^2+ED^2` ...........(1) 

In right-angled triangle AED, applying Pythagoras theorem, we have: 

 

`AD^2=AE^2+ED^2` 

`⇒ AE^2=AD^2-ED^2` ...............(2) 

Therefore, 

`AB^2=AD^2-ED^2+EB^2`   (from(1) and (2)) 

`AB^2=AD^2-ED^2+(BD-DE)^2` 

`=AD^2-ED^2+(1/2BC-DE)^2` 

`=AD^2-DE^2+1/4BC^2+DE^2-BC.DE` 

`=AD^2+1/4BC^2-BC.DE`  

This completes the proof. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Triangles - Exercises 4

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 4 Triangles
Exercises 4 | Q 15

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×