हिंदी

In a Circle with Centre O, Ab and Cd Are Two Diameters Perpendicular to Each Other. the Length of Chord Ac is - Mathematics

Advertisements
Advertisements

प्रश्न

In a circle with centre O, AB and CD are two diameters perpendicular to each other. The length of chord AC is

विकल्प

  • 2AB

  • \[\sqrt{2}\]

     

  • \[\frac{1}{2}AB\]

     

  • \[\frac{1}{\sqrt{2}}AB\]

     

MCQ

उत्तर

\[\frac{1}{\sqrt{2}}AB\]

We are given a circle with centre at O and two perpendicular diameters AB and CD.

We need to find the length of AC.

We have the following corresponding figure:

Since, AB = CD                   (Diameter of the same circle)

Also, AOC = 90°

And,  AO =  `(AB)/2`

Here,  AO = OC (radius)

In ΔAOC

`AC^2 = AO^2 + OC^2 = AO^2 + AO^2`

        `= ((AB)/2)^2 + ((AB)/2)^2`

 `AC^2 = (AB^2)/2`

`AC = (AB)/(sqrt(2))`

 

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Circles - Exercise 15.7 [पृष्ठ ११२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 15 Circles
Exercise 15.7 | Q 25 | पृष्ठ ११२

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×