हिंदी

In an Equilateral δAbc, Ad ⊥ Bc, Prove that Ad2 = 3bd2. - Mathematics

Advertisements
Advertisements

प्रश्न

In an equilateral ΔABC, AD ⊥ BC, prove that AD2 = 3BD2.

उत्तर

We have, ΔABC is an equilateral Δ and AD ⊥ BC

In ΔADB and ΔADC

∠ADB = ∠ADC [Each 90°]

AB = AC [Given]

AD = AD [Common]

Then, ΔADB ≅ ΔADC [By RHS condition]

∴ BD = CD =BC/2              .......(i) [corresponding parts of similar Δ are proportional]

In, ΔABD, by Pythagoras theorem

AB2 = AD2 + BD2

⇒ BC2 = AD2 + BD2                  [AB = BC given]

⇒ [2BD]2 = AD2 + BD2             [From (i)]

⇒ 4BD2 − BD2 = AD2

⇒ 3BD2 = AD2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Triangles - Exercise 7.7

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 7 Triangles
Exercise 7.7 | Q 18

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×