हिंदी

In the Following Figure, Abc is a Right-angled Triangle, ∠B = 90°, Ab = 28 Cm and Bc = 21 Cm. with Ac as Diameter a Semicircle is Drawn and with Bc as Radius a Quarter Circle is D - Mathematics

Advertisements
Advertisements

प्रश्न

In the following figure, ABC is a right-angled triangle, ∠B = 90°, AB = 28 cm and BC = 21 cm. With AC as diameter a semicircle is drawn and with BC as radius a quarter circle is drawn. Find the area of the shaded region correct to two decimal places.

 

योग

उत्तर

We have given two semi-circles and one circle.

Area of the shaded region = area of semicircle with diameter AC + area of right angled triangle ABC − area of sector

First we will find the hypotenuse of right angled triangle ABC.

`AC^2=AB^2+BC^2`

`∴ AC^2=28^2+21^2`

`∴ AC^2=784+441`

`∴ AC^2=1225`

`∴ AC=35`

`∴ "Area of the shaded region"=(pixx17.5xx17.5)/2+1/2xx28xx21-θ/360xxpixx21xx21`

`∴ "Area of the shaded region"=(pixx17.5xx17.5)/2+14xx21-1/4xxpixx21xx21`

Substituting `pi=22/7`we get, 

`∴ "Area of shabed region"=(22/7xx17.5xx17.5)/2+14xx21-1/4xx22/7xx21xx21`

`∴ "Area of shabed region"=962.5/2+14xx21-1/2xx11xx3xx21`

`∴ "Area of shabed region"=481.25+294-346.5`

`∴ "Area of shabed region"=428-75`

Therefore, area of shaded region is `428.75 cm^2`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Areas Related to Circles - Exercise 13.4 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 13 Areas Related to Circles
Exercise 13.4 | Q 40 | पृष्ठ ६२

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×